For our recent science workshop we were studying a concept known as Scientific Literacy. We were put into groups to try and get a good understanding of the term. So, Hannah Gibson, Kathleen Mullen, Michelle Mackie and I have written a report on our findings.
According to the Programme for International Student Assessment, scientific literacy is defined as “the capacity to use scientific knowledge, to identify questions and to draw evidence-based conclusions” It then goes on to tell us that “Clearly this does not mean turning everyone into a scientific expert, but enabling them to fulfil an enlightened role in making choices” This definition helps us to understand that science is something which should involve research of a specific area of science, ask relevant questions and find a suitable outcome. It also explains that science is a subject which should be enjoyed by pupils and teachers.
Without noticing, we use science every day of our lives and a lot of our decision making comes from science. From choosing what to eat to considering how our decisions will impact the surrounding environment. So, an understanding of scientific literacy is extremely important in having a sound understanding of all types of science in everyone’s daily lives.
Some may say that not all aspects of primary science need to involve fair testing. For example one of the primary school science experiences and outcomes states: I can identify and classify examples of living things, past and present, to help me appreciate their diversity. I can relate physical and behavioural characteristics to their survival or extinction. SCN 2-01a (Scottish Government, 2009) Fair testing may not need to be used for this particular outcome, however it will contribute to the child’s level of scientific literacy. (Jane Turner et al, 2012). Overall this supports the idea that fair testing does contribute to becoming science literate although it is not always vital. It is possible to become science literate without always using fair testing. Jane Turner et al (2012)
Within scientific experiments, a fair test is one which the variables are controlled and bias is avoided. The aim of this it to provide reliable results that allow the experimenter to observe and identify the impact of one factor.
While exploring the concept of fair testing in the classroom, children should be encouraged to think about all of the factors that could influence the results of the experiment and which of these can be controlled. In this way, children are learning to become critical and the appreciate that absolute reliability may not be possible (Linfield, 2009. p3)
It is vital that children are taught the principles of fair testing within schools, because this allows them to recognise the wide variety of factors which can influence of the results of a test or experiment. This knowledge allows children to be objective and to feel more confident to challenge or question information, rather than accepting it on face value.
- Linfield, R S, 2009. Planning to teach Science: in the Primary Classroom. London: Hopscotch
- Turbull, M. (2016) Creating Connections and Contagious Enthusiasm for Science. Available at: http://www.letstalkscience.ca/about-us/why-science.html (Accessed: 9th February 2016)
- OECD [Organisation for Economic Co-operation and Development] (2003) The PISA 2003 Assessment Framework – Mathematics, Reading, Science and Problem Solving Knowledge and Skills. Paris: OECD.
- it’s Not Fair. Available at: https://www.ase.org.uk/journals/primary-science/2012/01/…/30-33.pdf (Accessed: 09/02/15)
- Scottish Government (2009) Curriculum for Excellence: Science: Experiences and Outcomes. Available at: http://www.educationscotland.gov.uk/Images/sciences_experiences_outcomes_tcm4-539890.pdf (Accessed: 09/02/16)