The end is near… My Profound Understanding of Fundamental Mathematics

As Semester one draws to its conclusion, I can’t help but feel a bit sentimental on my time in the ‘Discovering Mathematics’ elective. It has been a very enjoyable experience for me and I would encourage anyone who is going into second year to pick it as your elective. It is not about learning complex quadratic equations or even recapping on trigonometry, it actually is more useful that any of those concepts will ever be. I have mentioned in previous blogs that I was not the biggest fan of mathematics due to my stubbornness and having bad experiences at high school level. However, this elective has totally changed my ideology and it will definitely help me gain confidence as I go into my third year placement. I thought since the elective is over that I talk about my ideas and give my ideology and interpretation of what a profound understanding of mathematics is.

At the very beginning of this elective, the idea of fundamental mathematics was introduced. We were given some input on what it meant, but in all honesty I found it hard to understand. This was the case until I came across the work of Liping Ma. Ma conducted research in china and America to identify why the U.S was falling behind in terms of the world rankings and test results. She concluded that teachers in the U.S did not posses a deep understanding of elementary mathematics. Ma (2010) hypothesised that initial teacher training and that during this teachers should become familiar with basic mathematics (fundamental mathematics) much like her teachers in china. In hind sight, Ma (2010) came up with four characteristics which would allow a teacher to have a profound understanding of fundamental mathematics:

1.  connectedness – this factor is about teachers emphasising how maths connects to other procedures that the pupils are learning.
2. multiple perspectives – moving away from the idea that there is only one way to get an answer
3. basic ideas (principles) – that teachers should bring ideas back to basics to encourage good attitudes in mathematics to promote understanding and a love for the subject
4. longitudinal coherence – progression: the teacher needs to be able to see where the child is and how to further their progress in mathematics.

When you break these four principles of fundamental mathematics down, it is clear to see why maths is so important for everyone. When we think about connectedness, we need to look to our Curriculum for Excellence where cross curricular learning has to be incorporated. This is so important because maths is in everything that we see and do and it is also very important to see the links between maths and our world. Secondly, there is a huge maths myth that has been around for decades – ‘there is only one way to find an answer’… no there is not. There are multiple ways in which problems can be solved – its just about teaching maths in different ways. Thirdly, basic ideas is fundamental to fundamental mathematics because fundamental actually means ‘basic’. We as practitioners need to take maths back to its roots in order for children to progress and love maths at face value. In addition, basic does not mean that it can’t be challenging or fun (I will get to this). Finally, when we think about longitudinal coherence, we think of progression. Teachers need to know where each of their children are at in their learning and the teacher needs to take the steps necessary in order for our children to progress.

It is all very well talking about the theory of fundamental mathematics, but what have I learned about it? Well for starters, I can say that maths is absolutely everywhere… in the outdoors, in the weather – you name it and its there (links to connectedness). I believe that it is absolutely vital to make the connections that mathematics allows us to see. We need to make our children aware of this in order to heighten their love and interest for mathematics. I am aware that maths needs to be an active subject for children to really get their teeth into and enjoy. My blog post ‘active learning in mathematics’ covers this – it highlights that basic principles of mathematics can be taught in fun and interesting ways in which your children will understand. Furthermore, there is no better feeling in the world than seeing the children in your class engaged, learning and having fun. Maths allows us as practitioners to experiment and play with certain theories in order to evoke fun and enjoyment. For example, the lesson on demand planning was absolutely fantastic!! Moreover, enthusiasm counts for a lot in teaching. I mean why do you think I had such a negative view on mathematics? Its probably because my teachers in the past have never shown a passion for it. Our lecturers for this module have been the most enthusiastic people I have ever seen. It has made me become enthusiastic and, of course, if your enthusiastic as a teacher, your children will also become enthusiastic.

Therefore, I believe that fundamental mathematics for a practitioner to be confident and have a profound knowledge of basic maths in order for our children to understand and develop a love for mathematics. In addition, the practitioner needs to be able to encourage and motivate their children through meaningful and engaging activities that incorporates active learning. Furthermore, practitioners need to also make connections with mathematics in the real world and encourage their children  to make these connections as well. Finally, and I can’t emphasise this enough, we must be able to paint a picture of each child’s progress and be able to plan the steps in order for them to succeed and develop in mathematics.

reference

Ma, L. (2010). Knowing and Teaching Elementary Mathematics: Teachers’ Understanding of Fundamental Mathematics in China and the United States. 2nd ed. New York: Routledge. P1-50.

Christmas in Mathematics – ideas for the classroom

Its that time of year again when the lights are up, songs are being sung, decorations are being hung and joy is absolutely everywhere. What is this time you ask? it is indeed Christmas. It is obvious that Christmas is a time for giving and thinking of loved ones, but after a recent blog post from Andy Hughes (titled ‘Christmaths’), I have been inspired to blog about how maths can be incorporated into Christmas in fun and inventive ways. In addition, it has made me want to uncover the fundamental principles of mathematics in Christmas.

Hughes (2015) in his blog post ‘Christmaths’ describes mathematics in Christmas. He states that  snowflake’s are a ‘fractal (a fractal is a shape that contains similar patterns which recur throughout the shape on a smaller scale)’. In addition he identifies that zooming in on a snowflake just produces more details and can splurge up fundamental processes such as scaling, shape and ratio – very fundamental processes. On a larger scale, lets take the fundamental process of shape. As I have mentioned numerous times before, maths is all around us. In a seasonal sense, we only need to look at our Christmas trees to see that shape is evident. For example, Christmas baubles. These are spherical in shape. The star on top of the tree also shines bright, but is still a shape. However, what is the maths behind a Christmas tree? It could be suggested that there is maths in assembling a Christmas tree (especially and artificial one. For example, you will need to have the right length of Christmas tinsel to pass around the tree – the mathematical concept of length and measurement. In addition, you will need to have enough Christmas baubles in order for the tree to be symmetrical. Talking about symmetry, this can be used widely as examples to help children understand this concept. For example, trees are symmetrical, as are snowmen, stars, snowflakes.. the list goes on. This can be used as a consolidation activity and it effectively ties Christmas into mathematics.

Moreover, Christmas time in the classroom should be an exciting and engaging time for children. So why can’t we use maths within Christmas? Even if it is not directly from a maths lesson. Board games are a fantastic way to do this and they challenge a range of mathematical concepts. Take monopoly, for example. Now, I am not going to lecture you on how to play monopoly as I am sure we all have a ‘profound understanding’ of how to play it. However, what does monopoly all boil down to? Money. In order to play this game, children must have a basic knowledge of money and will have to subtract or add together money when they land on someone’s property or even if they pass go! I find this to be pretty incredible – its fun and engaging, but you are learning at the same time… Do you see where I am going with this? Take snakes and ladders – counting is the fundamental principle there. Cluedo – problem solving to find out who really committed the crime. Even in dominos there is a basic element of counting. Probability is also another fundamental principle that can be seen in games that use dice – what is the probability of  landing on a six? Lets be honest, which games do not have dice in them?

It is obviously apparent that maths is incorporated into Christmas profoundly. If you even think about presents under your tree – some are cuboidal and some are spherical. Shape is such a common theme within Christmas. So when your opening your presents this year, have a second thought about how maths is incorporated into Christmas – it may even inspire you to write a blog post!!!!

reference:

Hughes, A. (2015) Christmaths. In a Class of my Own. Last accessed 06/12/15. Available at https://blogs.glowscotland.org.uk/glowblogs/ajhportfolio/2015/12/02/christmaths/

Mathematics in Demand Planning – Show me the Money!!!!

As mentioned in my previous blog posts, mathematics is incorporated in to absolutely everything in life. This idea was further embedded during a lecture on supply chain and logistics in maths. It was a three hour input, but It was honestly the best maths class to date. It was completely relevant, interactive and so much fun. This blog post aims to draw on points about fundamental mathematics on previous blog posts and how it is incorporated into demand planning.

Firstly, when we talk about supply chain and logistic planning, what springs to mind is food. Apart from the odd rumble of my stomach, there is actually some mathematical concept behind this all. lets take crisps for example. If we think about the bar code, it has a significant amount of numbers around it (see image below).

Within the red circle, is a best before date 06/11/10. The number to the side says 06:51 which would highlight the time where the big packet (if it is a multipack) was closed. The number code under 06:51 is 275 which means which day within the year it has been produced. These timings are absolutely crucial for the company to give an accurate sell by date which will prevent their customers from getting food poisoning. The fundamental mathematics behind this is predicting by using the numbers to provide an accurate time scale for consumption. To an extent, the fundamental mathematics behind it could be knowing the date and the days of the year. Furthermore, each packet of crisp has a certain weight which could identify that another aspect of fundamental mathematics is weight. Even when the small packets are being placed into the big multi-pack bag, there are still a specific number which is out in each bag. This takes the art of crisp making and manufacturing down to being able to count. Fundamentally, that is astounding. Come to think about it, think of all the activities that you could bring in to the classroom around crisps. Potentially you could go down the rout of how the crisps are made, what machinery is used to manufacture crisps and how they are programmed.. you could even take a stab at making your own crisps!! Of course, maths comes into every single one of those activities.

I will say this again, ‘MATHS YOU HAVE AMAZED ME!!!’  in addition, you actually do this within the context of the class because I feel that this is so beneficial for children to understand and so they can continue there love for mathematics.

Maths in Astronomy

I was absolutely intrigued in today’s maths lecture about maths in astronomy. In my previous blog post, I argued that mathematics was apparent in every single thing on earth. However, after today, I realise that it goes beyond the earth into our universe. This blog aims to pick out the fundamental mathematics in space and how it can be applied to the classroom.

An important point about today’s lecture was the idea that there are millions upon millions of stars in our universe (approximately 10,000,000,000,000,000,000,000.) That idea completely sums up that the universe is a massive place. However, I am not blogging about the numbers and facts about space, but I am trying to delve in to the fundamental maths. A potential aspect of fundamental mathematics in space is potentially base systems. The fact that massive numbers are used to represent how far a planet is away from another or how big or the diameter of a certain planet is. Without the basic knowledge of numbers, this would not be possible to comprehend. In addition to this, take distance for example, to define how far away a particular object is, we use KM. Therefore, we have to have a basic knowledge of distance. For example, if we only used millimetres to measure distances, we would be there all day and it would cause some sort of confusion if you were to give someone directions.

Continuing on the idea of fundamental mathematics, the notion of light years was introduced and what excited me was that a light year is the distance light travels is one year. If we look up at the night sky and we see many bright and sparkling stars looking back at us. However, what is apparent is that those stars have probably imploded years ago. The closest star to us is four light years away. So basically if the star had imploded, we wouldn’t know until four years later. I find that concept fascinating and it highlights that space is huge. In addition to this, when looking at galaxies, I found Fibonacci’s sequence in amongst it all. You can see our milky way twisitng and spiralling to create a very beautiful scenery.

So how can this be introduced in the wider context? Or within the context of the classroom? Luckily, I have had some experience with this during my first year placement. What it was mostly concerned with was the idea of learning facts and figures, naming the planets, and making wall displays. I completely understand that this was the children’s topic work, but it would be so beneficial to apply mathematics to this topic, especially fundamental mathematics. Gaining a good knowledge of the solar systems is good, but we as teachers should be giving our children opportunities to explore the notion of maths in astronomy and play around with it. This would make for a much more interesting lesson and would probably be more beneficial than learning facts and figures. The ideal thing about mathematics is the idea that it can be playful and experimental and fundamental maths allows this due to bringing ideas back to basics and then building the learning up and up.

The Maths Behind Hurricane Abigail

After all this hype about a potentially menacing storm that has hit the shores of Scotland, I thought to myself that it couldn’t actually be that bad. I was, however, mistaken to this notion. After walking along Dundee City high street a few moments ago, I was soaked within an inch of my life. It was calm one minute, then BOOM chaos! The storm has now come to Dundee and as I look out my window now, Dundee has been disrupted with small amounts of damage to public billboards and bus shelters. This got me thinking about the intensity of a storm and how vast they can be. It also got me thinking about how the maths come in to part with storms. As I sit with a blanket over my lap and a cup of tea by my side, I am going to attempt to discover the fundamental maths behind a hurricane and why they can be incredibly frustrating for everyone.

In my last few blog posts, I have been concerned with talking about maths as an active subject through many things like tessellation and maths with stories and play. This blog post will be somewhat different to these, but the principles and the fundamental mathematics still apply. Firstly, a hurricane is a mass storm with a violent wind and reaches above a speed of 75 mph!! 75 miles per hour… I don’t know what is scarier, the damage that it causes or the notion that it can travel faster than the speed limit of a car on the motorway. According to NASA (undated), Hurricanes are like giant engines that use warm, moist air as fuel. That is why they form only over warm ocean waters near the equator. The warm, moist air over the ocean rises upward from near the surface. Because this air moves up and away from the surface, there is less air left near the surface. Another way to say the same thing is that the warm air rises, causing an area of lower air pressure below. NASA continue by suggesting that air from surrounding areas with higher air pressure pushes in to the low pressure area. Then that “new” air becomes warm and moist and rises, too. As the warm air continues to rise, the surrounding air swirls in to take its place. As the warmed, moist air rises and cools off, the water in the air forms clouds. The whole system of clouds and wind spins and grows, fed by the ocean’s heat and water evaporating from the surface. In addition, a hurricane has an abundance of cumulonimbus clouds that form circular bands. The fundamental mathematics of a hurricane is its circular formation. Not only this, it is astonishing the way that hurricanes actually rotate. Do they rotate clockwise, or anticlockwise? storms from the north of the equator spin anti-clockwise and storms below the equator spin clockwise. This is because the Earth rotates on its axis. I find that so absolutely fascinating to say the least. It ultimately highlights that Mathematics is incorporated into absolutely everything that we see in this world and I agree with Will Berry on that one after his lecture on maths in the outdoors.

So why does this leave me feeling fascinated? Well probably because I am thinking about the mathematical activities that you could do within the context of the classroom. Firstly, you could investigate and display the different levels a hurricane is classified as. See diagram below:

 Category Wind Speed (mph) Damage at Landfall Storm Surge (feet) 1 74-95 Minimal 4-5 2 96-110 Moderate 6-8 3 111-130 Extensive 9-12 4 131-155 Extreme 13-18 5 Over 155 Catastrophic 19+

The children can ultimately collect the data to classify different (old or new storms) from around the world, especially in the case of hurricane Abigail. In addition, the children could also find the speed of the hurricane and predict how far it will travel and in what time by using the speed, distance, time formula. This is just naming a few, but please feel free to comment with any other activities that you can think of as I would like to read them.

Fundamentally, the basic maths behind an activity to do with a hurricane is research skills. Being able to tally, collect data and the general notion of handling and organising information. Not only this, this is good for children deepen their understanding of probability and likelihood of a storm like this happening again. The activities can be in abundance if you put your mind to it.

Finally, I will leave you with this satellite image of hurricane Abigail (picture taken by the University of Dundee):

This is a picture of hurricane Abigail just off the coast of North West Scotland. You can see the spiral motion and you can almost imagine the wind swishing and swaying around. What I find to be completely fascinating about this picture is that you can see Fibonacci’s sequence spiralling around and around (see image below):

Mathematics… You have amazed me again.