Can we touch the moon?

Education is one of the first places that allow children to build a realistic foundation of knowledge. It wasn’t until my first school placement that I began to understand the importance of putting fact into visual representation that all children understand. Therefore, if this is inaccurate it will result in a generation (or even generations) of flawed understanding. There is no better example of this than Space.

Without most teachers realising, there will be a time that a child in there class stares out of the window imagining what is beyond our drizzly, damp and occasionally blue sky. It is this unknown environment which beacons children to explore and build there experiences and knowledge of Space. I can happily say that I was most definitely one of those children. Primary 5 was the year of Space! Without a shadow of a doubt the experience that I had was incredible, I was well on my way to becoming a fully fledged astronaut. However, despite having amazing experiences, I cannot say that my knowledge of Space is at all realistic. Sadly this will be the case for many others who have or are in education at this time.

Until recently, I did not realise the enormity of Space. There is no word to describe how ginormous Space actually is and this is exactly where Space education must start. For me this is where my own knowledge is false because I was not aware of the scale of space.

To put this into perspective you can look at the distance between The Earth and The Moon. To the majority of people – including myself-  believed that the The Moon was only a short distance away when in reality it is actually much greater than that. To scale you can approximately shrink The Earth down to the size of a basket ball and The Moon down to the size of a tennis ball.  Using this scale this means that a basketball and The Earth along with a tennis ball and The Moon are at a ratio of 5, 280, 000: 1 (The Science Asylum, 2017).

Using this scale we can put the distance between The Earth and The Moon into a realistic visual perspective.  The distance between the core of The Earth and The Moon is 238, 855 miles, when scale down using the ratio of the basket and tennis ball this distance is only 7.2 meters. In terms of what this looks like to scale it would look the picture below.

Encouraging ourselves as Educators to understand scale is extremely important, not only to physically represent Space in our own mind but in the minds of the those within the classroom. As fun as it may sound, taking children to Space is not a class trip that can be offered within my lifetime. This is why it is so important to allow children to experience accurate scale. This can be linked to the ideas of a logarithmic scale present in the minds of those inadequate and unrealistic experiences. Bellos (2010) maintains that children believe that with unresolved understanding will be unable to fully interpret the realistic size of maximal numbers. From experience children believer that space looks simplistic; with planets knitted closely together on a perfectly circular orbit surrounding the sun.

Image result for solar system imagesGeneric image of Space.

Image result for spaceIn reality it is believed that space actually looks like this!


This is only a small part of Space. Space is actual made up of millions of solar systems that most of which can be easily understood. In other words the universe is made us of billions of stars, these stars form galaxies and galaxies form the universe. Overall, in order to promote a Profound Understanding of Fundamental Mathematics educators must invite children to build knowledge into compound understanding. This can relate to Ma’s (2010) key concept of connectedness which focuses on connecting mathematical procedures to wider concepts, thus enabling a greater understanding. In terms of Space, knowing the size of an the environment highlights intellectual solidity (Frobisher, 2007). Only when this happens children will be able to be able to explore the immensity of Space purposefully.

References

Bellos, A. Riley, A. (2010) Alex’s adventures in numberland. London: Bloomsbury.

Frobisher, L.J. (2007) Learning to teach shape and space: a handbook for students and teachers in the primary school. Cheltenham: Nelson Thornes.

Ma, L. (2010) Knowing and teaching elementary mathematics: teachers’ understanding of fundamental mathematics in China and the United States. Available at: https://ebookcentral.proquest.com/lib/dundee/detail.action?docID=481154. (Accessed: 25 October 2018).

The Science Asylum (2017) How far is the Moon? Available at: https://www.youtube.com/channel/UCXgNowiGxwwnLeQ7DXTwXPg.  (Accessed: 25 October 2018).

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *

Report a Glow concern
Cookie policy  Privacy policy

Glow Blogs uses cookies to enhance your experience on our service. By using this service or closing this message you consent to our use of those cookies. Please read our Cookie Policy.