Armadale Academy Higher Mathematics

Assessment Revision Booklet

R4 I can calculate the gradient of perpendicular lines.

1. Write down the gradient of the line perpendicular to the gradient given

(b)
$$m = -2$$

(c)
$$m = 6$$

(d)
$$m = \frac{1}{3}$$

(e)
$$m = -\frac{1}{4}$$

(f)
$$m = \frac{1}{5}$$

(g)
$$m = -\frac{2}{3}$$

(h)
$$m = \frac{5}{4}$$

(i)
$$m = -\frac{3}{5}$$

2. Write down the gradient of the line perpendicular to the given line

(a)
$$y = 5x + 2$$

(b)
$$y = \frac{2}{3}x - 7$$

(c)
$$y = 2 - 3x$$

(d)
$$y = 4 - \frac{1}{2}x$$

(e)
$$y = 3x - 3$$

(f)
$$y = x + 9$$

(g)
$$y - 4x + 12 = 0$$

(h)
$$3x - y - 8 = 0$$

(i)
$$3x - 2y + 7 = 0$$

(j)
$$8y + 4x - 2 = 0$$

R5 I can find the point of intersection of straight lines.

1. Find the point of intersection between each pair of lines

(a)
$$3x + 4y = -7$$
; and

$$2x + y = -3$$

(b)
$$y = -x + 12$$
; and $y = x - 4$

$$(c)$$
 $y = -x$

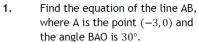
(c)
$$y = -x$$
; and $4x + 3y = 3$

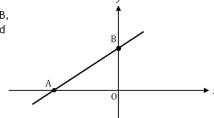
(d)
$$2x - 5y = 1$$
;

and

$$4x - 3y = 9$$

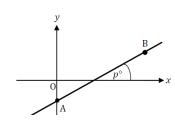
I can apply $m = tan\theta$ in the context of a problem. NR1





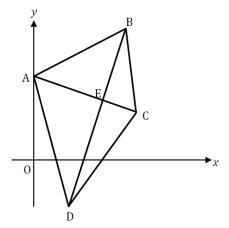
 $m = tan\theta$

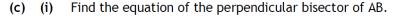
Find the size of the angle p° that 2. the line joining the points A(0,-2) and $B(4\sqrt{3}, 2)$ makes with the positive direction of the x-axis.



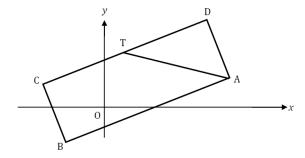
Finding the equation of a straight line

- 1. Find the equation of the straight line through the point (-1,5) which is parallel to the line with equation 3x y + 1 = 0.
- 2. Find the equation of the straight line which passes through the point (-1, 4) and is perpendicular to the line with equation 4x + y 3 = 0.
- 3. Find the equation of the straight line which is parallel to the line with equation 2x + 3y = 6 and which passes through the point (2, -1).
- NR3 I know the properties of: midpoints; altitudes; medians; perpendicular bisectors and can apply these in problems (including points of intersection).
- 1. A quadrilateral has vertices A(-2,8), B(6,12), C(7,5) and D(1,-3) as shown in the diagram.
 - (a) Find the equation of diagonal BD.
 - (b) The equation of diagonal AC is x + 3y = 22. Find the coordinates of E, the point of intersection of the diagonals.





- (ii) Show that this line passes through E.
- 2. The diagram shows rectangle ABCD with A(7,1) and D(5,5).



- (a) Find the equation of AD.
- **(b)** The line from A with equation x + 3y = 10 intersects with CD at T. Find the coordinates of T.
- (c) Given that T is the midpoint of CD, find the coordinates of C and B.

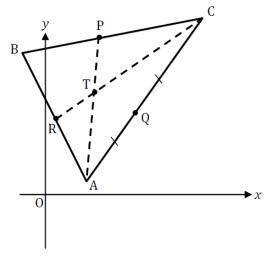
Equation of an altitude

intersection

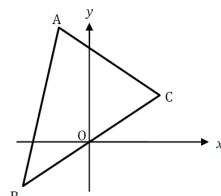
3. Triangle ABC has vertices A(4,1), B(-4,17) and C(18,21).

Medians AP and CR intersect at the point T(6,13).

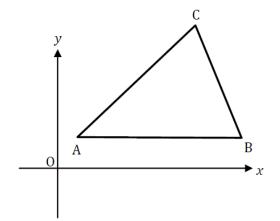
- (a) Find the equation of median BQ.
- (b) Verify that T lies on BQ.



- 4. Triangle ABC has vertices A(-2,6), B(-4,-2) and C(4,2) as shown. Find
 - (a) the equation of the line p, the median from C of triangle ABC.



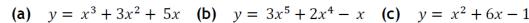
- (b) the equation of the line q, the perpendicular bisector of BC.
- (c) the coordinates of the point of intersection of the lines p and q.
- 5. Triangle ABC has vertices A(1,2), B(11,2) and C(7,6) as shown.
 - (a) Write down the equation of l_1 , the perpendicular bisector of AB.
 - (b) Find the equation of l_2 , the perpendicular bisector of AC.



(c) Find the point of intersection of the lines l_1 and l_2 .

R1 I can differentiate algebraic functions which can be simplified to an expression in powers of x, including terms expressed as surds.

Find the derivative of the following



(b)
$$y = 3x^5 + 2x^4 - x^4$$

(c)
$$y = x^2 + 6x - 1$$

(d)
$$f(x) = x^{\frac{2}{3}} + 4x^2$$
 (e) $f(x) = 3x^{\frac{1}{2}} - 2x^{-5}$ (f) $y = 5x^{-2} - 3x^{\frac{1}{2}}$

(e)
$$f(x) = 3x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}$$

(f)
$$y = 5x^{-2} - 3x^{\frac{1}{2}}$$

(g)
$$f(x) = \frac{1}{2\sqrt[3]{x}} + x^2$$
 (h) $y = 3x^7 - \frac{1}{5\sqrt[4]{x^3}}$ (i) $y = \frac{3}{5\sqrt[2]{x^5}} + 5$

(h)
$$y = 3x^7 - \frac{1}{5\sqrt[4]{x^3}}$$

(i)
$$y = \frac{3}{5\sqrt[3]{x^5}} + 5$$

(j)
$$y = \frac{2}{3\sqrt[4]{x^3}} + 2x^2 + x$$
 (k) $y = 5x^2 - \frac{1}{\sqrt[3]{x^2}}$ (l) $y = 4x^{-1} - 4x^{\frac{2}{3}}$

(k)
$$y = 5x^2 - \frac{1}{\sqrt[3]{x^2}}$$

(I)
$$y = 4x^{-1} - 4x^{\frac{2}{3}}$$

(m)
$$f(x) = 5x^3 - 6x^{-\frac{1}{2}}$$
 (n) $f(x) = 4x^2 + \frac{6}{\sqrt[3]{x}}$ (o) $y = x^2 - 5 - \frac{1}{x^2}$

(n)
$$f(x) = 4x^2 + \frac{6}{\sqrt[3]{x}}$$

(o)
$$y = x^2 - 5 - \frac{1}{x^2}$$

Fractions and Roots

Introduction

More complex differentiation

Find the derivative of the following

(a)
$$y = (x+1)(x+2)$$

(a)
$$y = (x+1)(x+2)$$
 (b) $y = (x+2)(x-3)$ (c) $y = (x+2)^2$

(c)
$$y = (x+2)^2$$

(d)
$$v = (x-3)(x+4)$$

(d)
$$y = (x-3)(x+4)$$
 (e) $y = (x-5)(2x-2)$ (f) $y = x(x-4)$

(f)
$$y = x(x - 4)$$

(g)
$$y = (2x - 3)(x + 4)$$
 (h) $y = x^2(x - 2)$ (i) $y = \frac{1}{x^2}(x^3 + 2x)$

(h)
$$y = x^2(x-2)$$

(i)
$$y = \frac{1}{x^2}(x^3 + 2x)$$

(j)
$$y = \frac{1}{x}(x^2 + x)$$

(k)
$$y = (\frac{1}{x} + 1)^2$$

(j)
$$y = \frac{1}{x}(x^2 + x)$$
 (k) $y = (\frac{1}{x} + 1)^2$ (l) $y = \frac{1}{\sqrt{x}}(\frac{1}{\sqrt{x}} - 1)$

Find the derivative of the following

(a)
$$y = \frac{x^2 + 3x + 5}{x}$$

(b)
$$y = \frac{2x^3 + x^2 + x}{x}$$

(a)
$$y = \frac{x^2 + 3x + 5}{x}$$
 (b) $y = \frac{2x^3 + x^2 + x}{x}$ (c) $y = \frac{x^4 - 6x + x^3}{x^2}$

(d)
$$y = \frac{x+5}{x}$$

(d)
$$y = \frac{x+5}{x}$$
 (e) $y = \frac{3+x^3}{x^2}$

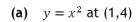
(f)
$$y = \frac{x+2}{\sqrt{x}}$$

(g)
$$y = \frac{(x+1)(x+2)}{x}$$

(g)
$$y = \frac{(x+1)(x+2)}{x}$$
 (h) $y = \frac{(x-1)(x+3)}{x^2}$ (i) $y = \frac{3x^2 + 5x + 1}{2x^2}$

(i)
$$y = \frac{3x^2 + 5x + 1}{2x^2}$$

NR1 I can determine the equation of a tangent to a curve, at a given point by differentiation.



(b)
$$y = x^2 + 2x$$
 at (0,2)

(c)
$$y = x^3 + 3$$
 at (2,8)

(c)
$$y = x^3 + 3$$
 at (2,8) (d) $y = x^2 - 6x + 5$ at $x = 2$

(e)
$$y = \sqrt{x} + 1$$
 at $x = 1$ (f) $y = x^2 + 2x - 3$ at (0,2)

(f)
$$y = x^2 + 2x - 3$$
 at (0.2)

(g)
$$f(x) = 5x^2 - 6x^{\frac{1}{2}}$$
 at $x = 1$ (h) $y = (x+4)^2$ at (2,-2)

(h)
$$y = (x+4)^2$$
 at $(2,-2)^2$

(i)
$$y = \frac{x^2 + 5x + 10}{x^2}$$
 at $x = 1$

(j)
$$y = \frac{1}{\sqrt{(x+1)}}$$
 at (3,3)

Equations of tangents

- A curve has equation $y = 3x^2 4x$. At the point T the tangent to this 2. curve has a gradient of 2, find the coordinates of T and hence the equation of the tangent.
- 3. A curve has equation $f(x) = 2x^2 + 8x - 3$. A tangent to this curve has a gradient of -4, find the equation of this tangent.
- A tangent to the equation $y = \frac{2}{\sqrt{x}}$ has a gradient of -1, find the equation of 4. this tangent.
- 5. A curve has equation $y = x^3 - 6x$. There are two tangents with a gradient 6. Find the equation of both tangents

NR2 I can determine use the stationary points of a curve and state their nature.

- 1. Find the coordinates of the Stationary points and determine their nature
 - (a) $y = x^3 6x^2 + 9x$
- **(b)** $y = x^3 3x^2 9x + 12$
- (c) $y = x^4 4x^3$

- (d) $y = x^3 3x + 2$
- (e) $y = x^3 12x + 2$
- (f) $y = 2x^3 7x^2 + 4x + 1$

- (g) $y = 3x^4 + 16x^3$
- (h) $y = 8x^3 x^2 + 11$

(i) $y = \frac{x^3 + 4x + 16}{x}$

(j) $y = (x-2)(x^2+1)$

NR3 I can sketch the graph of an algebraic function by determining stationary points and where it cuts the axes.

- Sketch the graph of the following functions, stating clearly where it cuts 1. the x & y axis

 - (a) $y = x^2 6x$ (b) $y = x^2 + 5x + 6$ (c) $y = x^2 5x$

(d)
$$y = 2x^3 - 3x^2 - 36x$$
 (e) $y = (x-1)^2(x+2)$ (f) $y = 12 - 4x - x^2$

Stationary points

Curve Sketching

- 1. State whether the function is increasing or decreasing
 - (a) $y = x^2 4x$ at x = 3
- **(b)** $y = x^3 3x + 2$ at x = -1
- (a) $y = x^2 10x + 4$ at x = -2 (b) $y = \frac{1}{3}x^3 \frac{1}{2}x^2 + 2$ at x = 4
- (a) $y = 4x^2 + 5x + 7$ at x = 1 (b) $y = 2x^4 4x^2 + 12$ at x = -1
- 2. For each function state the intervals in which it is increasing AND decreasing
 - (a) $y = x^2 5x + 12$

(b) $y = 2x^2 + x + 3$

(a) $y = 8 + 2x - x^2$

(b) $y = x^3$

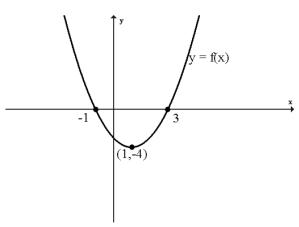
(a) $y = 3x - x^3$

- **(b)** $y = x^2(3 2x)$
- Show that the function $y = x^3 x^2 + x$ is never decreasing 3.

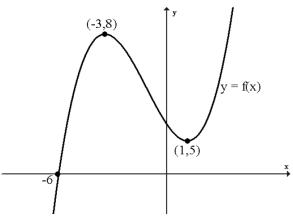
I can sketch graphs of derivatives.

1. For each graph of f(x) sketch f'(x)

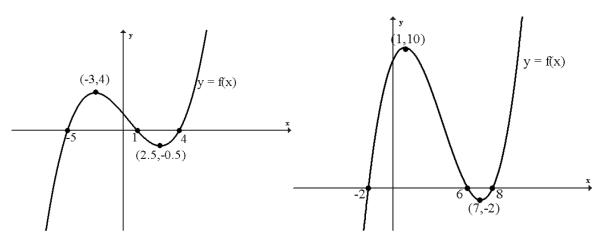
(a)



(b)



Graphs of Derivatives (c)

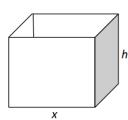


(d)

NR7 I can solve optimization problems in context using differentiation.

1. A plastic box with a square base and an open top is being designed. It must have a volume of 108 cm³.

The length of the base is x cm and the height is h cm.

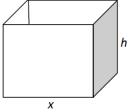


(a) Show that the total surface area A is given by

$$A(x) = x^2 + \frac{432}{x}$$

- (b) Find the dimensions of the tray using the least amount of plastic
- 2. An open tank is to be designed in the shape of a cuboid with a square base. It must have a surface area of 100 cm².

The length of the base is x cm.

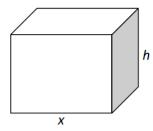


(a) Show that the volume V is given by

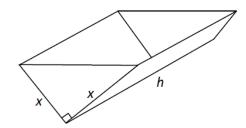
$$A(x) = \frac{x}{4(100 - x^2)}$$

- (b) Find the length of the base which gives the tank a maximum volume.
- 3. The height h m of a ball thrown upwards is given by the formula $h(x) = 20t 5t^2$ where t is the time in seconds from when the ball is thrown.
 - (a) When does the ball reach its maximum height?
 - (b) Calculate the maximum height of the ball.

4. A Cuboid measures x by x by h units. The volume is 125 units².



- (a) Show that the surface area of this Cuboid is given by $A(x) = 2x^2 + \frac{500}{x}$
- (b) Find the value of x such that the surface area is minimised.
- **5.** An open trough is in the shape of a triangular prism, the trough has a capacity of 256 000 cm³.



(a) Show that the surface area of this trough is given by

$$A(x) = x^2 + \frac{1024\,000}{x}$$

(b) Find the value of x such that the surface area is minimised.

R1 I can evaluate the definite integral of a polynomial functions with integer limits.

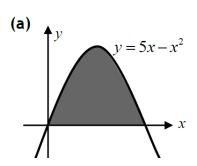
Definite integrals

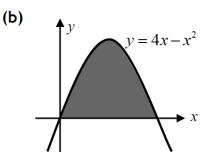
- 1. Find
- (a)

- (d)
- $\int_0^1 (x^2 3x + 4) \ dx \qquad \textbf{(b)} \qquad \int_0^1 (4x^2 + 3x) \ dx \qquad \textbf{(c)} \qquad \int_0^1 (x^3 + 2x^2 1) \ dx$ $\int_0^2 (2x 1)(x + 2) \ dx \qquad \textbf{(e)} \qquad \int_{-1}^1 2x^2 (2x + 1) \ dx \qquad \textbf{(f)} \qquad \int_{-2}^1 (2x^3 x^2 + 3x) \ dx$

I can evaluate the area enclosed between a function and the x axis. NR₂

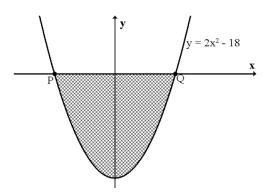
1. Find the shaded area in the following diagrams





Area under a curve

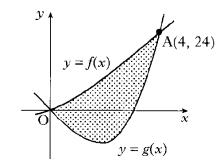
- 2. The diagram shows part of the graph of $y = 2x^2 - 18$.
 - (a) Find the coordinates of P and O.
 - (b) Find the shaded area.



NR3 I can evaluate the area enclosed between two functions.

The incomplete graphs of $f(x) = x^2 + 2x$ 1. and $g(x) = x^3 - x^2 - 6x$ are shown in the diagram. The graphs intersect at A(4, 24) and the origin.

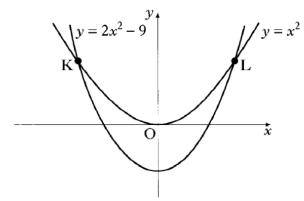
> Find the shaded area enclosed between the curves.



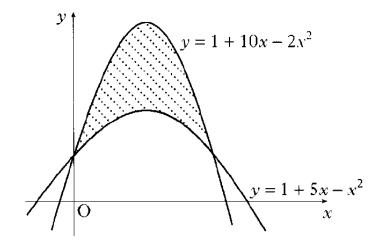
Area between curves

2. The curves with equations $y = x^2$ and $y = 2x^2 - 9$ intersect at K and L as shown.

Calculate the area enclosed between the curves.



3. Calculate the shaded area enclosed between the parabolas with equations $y = 1 + 10x - 2x^2$ and $y = 1 + 5x - x^2$.



NR4 I can solve differential equations of the form $\frac{dy}{dx} = f(x)$ and give a particular solution.

1. Given the gradient $\frac{dy}{dx}$ of the curve at the point (x, y) and a point on the curve, find the equation of each curve:

Equations

a)
$$\frac{dy}{dx} = 3x^2 - 6x + 1$$
 (3,4)

b)
$$\frac{dy}{dx} = 4x^3 - 6x^2$$
 (1,9)

2. Find the solution to the following differential equations:

a)
$$\frac{dy}{dx} = 4x^3 + \frac{2}{x^3}$$
 and $y = 0$ when $x = 1$

b)
$$\frac{dy}{du} = \frac{u^2 + 1}{u^2}$$
 and $y = 4$ when $u = 2$