Armadale Academy National 5 Mathematics

Assessment 1
Revision Booklet

Rounding to Significant Figures

1. Round the following to 1 significant figure:

- (a) 12000
- (b) 46000
- (c) 74500
- (d) 83771
- (e) 95120
- (f) 330000

- (g) 863000 (h) 248220 (i) 489331
- (j) 13800000

2. Round the following to 1 significant figure:

- (a) 2.9
- (b) 3.2
- (c) 5.7
- (d) 46.81
- (e) 57.25
- (f) 80.96
- (g) 94.9

- (h) 115.1
- (i) 8.482
- (j) 13.65
- (k) 66.321
- (l) 5501.4
- (m) 48.02
- (n) 99.99

3. Round the following to 2 significant figures:

- (a) 844
- (b) 665
- (c) 129
- (d) 2840
- (e) 9250
- (f) 1359
- (g) 298

- (h) 504
- (i) 999
- (j) 3841
- (k) 48500
- (l) 13.7
- (m) 58.3
- (n) 49.6

4. Round the following to 3 significant figures:

- (a) 9433
- (b) 1891
- (c) 2496
- (d) 3.226
- (e) 37756
- (f) 57147
- (g) 7.0078

- (h) 51.564
- (i) 0.90341 (j) 2.7892
- (k) 0.08906 (l) 0.007812 (m) 9909.1 (n) 0.6006

Percentages (Compound Interest, Appreciation, Depreciation)

1. Paul leaves £4000 in the bank for two years. It earns compound interest of 5% per year. Calculate the total amount Paul has in the bank at the end of the two years.

Interest etc.)

- 2. The population of birds on an island is estimated to increase by 10% every year. The population of birds on the island is 20000. Calculate an estimate for the population of birds in three years time.
- 3. A full water tank holds 500 litres. The tank begins to leak water and is losing 14% of its contents every hour. Find how much water is left in the tank after 8 hours.
- 4. The height of a tree increases by 60% each year. When planted the tree was 40cm tall. How tall will the tree be in 5 years time.

- 5. A house was bought for £100,000 Its value appreciates by 7.5% each year for the first three years. What was its value at the end of the three years?
- 6. The number of people living on a remote island decreases by 9% every 10 years. In 1950 there were 18000 living on the island.

 Calculate how many less people will be living on the island in 2020.

Reverse Percentages

Question 1: 20% of all the children in a class are left handed.

4 child

4 children are left handed.

How many children are there in the class altogether?

Reverse Percentages

Question 2: 30% of the members of a tennis club are pensioners.

36 members are pensioners.

- (a) How many members are there in total?
- (b) How many members are not pensioners?

Question 3: A group of people sit their driving theory test and 24 people passed.

80% of the people passed the driving theory test.

How many people sat the test altogether?

Question 4: An energy bar contains 2.1g of protein.

6% of the bar is protein.

What is the total mass of the bar?

Question 5: Swansea is a city in Wales.

The population of Swansea is 240,000

This population is 7.5% of the total population of Wales.

What is the total population of Wales?

Question 6: Heather invested money into a savers bank account.

Each year the money in the account earns 10% interest.

After one year, the total amount of money in the account was £2200

How much did Heather invest?

Question 7: A chair is on sale at a price of £20.80

This is a 20% reduction of the normal price.

What was the price of the chair before the reduction?

Question 8: The population of an island has decreased by 40% over 50 years.

The population in 2018 was 360 What was the population in 1968?

Fractions

1. Convert the following improper fractions into mixed numbers:

(b)
$$\frac{7}{5}$$

(c)
$$\frac{5}{2}$$

(d)
$$\frac{8}{7}$$

(e)
$$\frac{5}{3}$$

(g)
$$\frac{23}{2}$$

$$\frac{10}{3}$$
 (g) $\frac{23}{2}$ (h) $\frac{11}{4}$ (i) $\frac{11}{8}$ (j)

(i)
$$\frac{11}{8}$$

(j)
$$\frac{9}{4}$$

(k)
$$\frac{13}{10}$$

(l)
$$\frac{13}{6}$$

(m)
$$\frac{16}{7}$$
 (n) $\frac{51}{10}$

(n)
$$\frac{51}{10}$$

(o)
$$\frac{34}{11}$$

Improper Fractions to Mixed Numbers

2. Simplify fully:

$$\frac{18}{24}$$

$$\frac{(d)}{1}$$

$$\frac{(f)}{42}$$

$$\frac{70}{120}$$

$$\frac{49}{56}$$

$$\frac{22}{110}$$

$$\frac{18}{72}$$

$$\frac{22}{110}$$

$$\frac{18}{72}$$

$$\frac{60}{140}$$

$$\frac{45}{135}$$

$$\frac{40}{360}$$

$$\frac{64}{100}$$

$$\frac{85}{35}$$

$$\frac{48}{36}$$

Simplifying Fractions

3. Calculate the following, simplify your answers where possible:

(a)
$$1\frac{1}{2} + \frac{2}{3}$$

(b)
$$\frac{7}{9} + 1 = \frac{7}{3}$$

(c)
$$1\frac{3}{5} - \frac{3}{2}$$

(a)
$$1\frac{1}{2} + \frac{2}{3}$$
 (b) $\frac{7}{9} + 1\frac{1}{3}$ (c) $1\frac{3}{5} - \frac{3}{4}$ (d) $1\frac{5}{8} - 1\frac{1}{4}$

(e)
$$2\frac{1}{2} + 1\frac{1}{3}$$

(f)
$$2\frac{2}{9} - 1\frac{1}{3}$$

(g)
$$2\frac{2}{9} + \frac{5}{6}$$

(e)
$$2\frac{1}{2} + 1\frac{1}{3}$$
 (f) $2\frac{2}{9} - 1\frac{1}{3}$ (g) $2\frac{2}{9} + \frac{5}{6}$ (h) $1\frac{5}{12} + 1\frac{5}{8}$

(i)
$$3\frac{1}{10} + 2\frac{2}{3}$$
 (j) $1\frac{8}{9} - \frac{4}{7}$ (k) $3\frac{2}{3} - 1\frac{11}{20}$ (l) $4\frac{8}{15} + 3\frac{1}{3}$

(j)
$$1\frac{8}{9} - \frac{4}{7}$$

(k)
$$3\frac{2}{3} - 1\frac{11}{20}$$

$$4\frac{8}{15} + 3\frac{1}{3}$$

Adding and Subtracting

4. Calculate the following, simplify your answers where possible:

$$\frac{2}{5}$$
 ×

$$(c) \quad \frac{3}{4} \times 1 \frac{1}{2}$$

(a)
$$1\frac{2}{3} \times \frac{1}{4}$$
 (b) $\frac{2}{5} \times 1\frac{1}{4}$ (c) $\frac{3}{4} \times 1\frac{1}{2}$ (d) $2\frac{1}{2} \times \frac{7}{10}$

Multiplying Fractions

5. Calculate the following, simplify your answers where possible:

(a)
$$\frac{2}{3} \div 1 \frac{4}{5}$$

(a)
$$\frac{2}{3} \div 1\frac{4}{5}$$
 (b) $1\frac{1}{2} \div 1\frac{9}{10}$ (c) $2\frac{3}{7} \div \frac{1}{2}$ (d) $2\frac{1}{3} \div 5\frac{1}{2}$

(c)
$$2\frac{3}{7} \div \frac{1}{2}$$

(d)
$$2\frac{1}{3} \div 5\frac{1}{2}$$

(e)
$$3 \div 2 \frac{1}{8}$$

(f)
$$4\frac{1}{3} \div 2\frac{9}{10}$$

$$(g) \quad 6\frac{5}{6} \div 2$$

(e)
$$3 \div 2\frac{1}{8}$$
 (f) $4\frac{1}{3} \div 2\frac{9}{10}$ (g) $6\frac{5}{6} \div 2$ (h) $1\frac{5}{12} \div 2\frac{2}{11}$

Dividing Fractions

Median and Interquartile Range

Find the median and IQR:

- 1. 2, 4, 5, 7, 9, 10, 12
- 2. 13, 14, 14, 15, 15, 18, 21
- 3. 11, 18, 12, 15, 12, 23, 25, 21, 20
- 4. 1, 7, 2, 11, 9, 3, 1, 6, 10, 7, 8
- 5. 53, 52, 34, 25, 57, 44, 58, 37, 54
- 6. 51, 48, 50, 54, 37, 33

APPLYING QUESTION

The time taken, in minutes, for members of a new running club to complete a 5km run is shown:

(a) Calculate the median and the interquartile range.

After 6 months training the median time was 29 minutes and the interquartile range was 17.

(b) Make **two** valid statements to compare the performance before and after training.

Mean and Standard Deviation

Calculate the mean and standard deviation of each:

- 1. 14, 17, 15, 23, 20, 19
- 2. 8, 13, 7, 6, 8, 9, 5
- 3. 1.8, 3.7, 4, 2.6, 5.9
- 4. 102, 108, 112, 109, 110, 107
- 5. 47, 56, 61, 52, 59
- 6. 1, 2, 4, 1, 3, 2, 1

APPLYING QUESTION

<u>Formulae</u>

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Or

$$=\sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n-1}}$$

Median and IQR

Mean and Standar Deviation

The prices, in pence, at five petrol stations around Airdrie for a litre of unleaded are:

121 119 120 117 118

- (a) Calculate the mean and standard deviation.
- (b) Why do you think the standard deviation must be so low?
- (c) If each petrol station had to put their price up by 4 pence what effect would it have on the mean and standard deviation?

A) Expand and Simplify:

1.
$$3(x-3) + 2(x-5)$$

$$3(x-3) + 2(x-5)$$
 2. $-7(2t-3w) - 11(t-1)$

3.
$$(x+4)(x+6)$$

$$(x+4)(x+6)$$
 4. $(x-8)(x-7)$

5.
$$(3x+4)(2x-1)$$

$$(3x+4)(2x-1)$$
 6. $(5x-3)(x-2)$

B) Expand and simplify:

1.
$$(x+3)(x^2+2x+1)$$

$$(x+3)(x^2+2x+1)$$
 2. $(x+2)(3x^2+5x-1)$

3.
$$(2x+1)(x^2-3x+4)$$

$$(2x+1)(x^2-3x+4)$$
 4. $(x-2)(x^2+5x+2)$

5.
$$(x-5)(x^2-3x-10)$$
 6. $(2x+3)(x^2-4x+3)$

6.
$$(2x+3)(x^2-4x+3)$$

7.
$$(3x-1)(2x^2+4x-1)$$
 8. $(x-1)(x^2-7x+6)$

8.
$$(x-1)(x^2-7x+6)$$

Volume

Formulae Volume of a sphere

$$V = \frac{4}{3}\pi r^3$$
 Volume of a cone

$$V = \frac{1}{3}\pi r^2 h$$

Volume of a pyramid

$$V = \frac{1}{3}Ah$$

1. A traffic bollard is in the shape of a cylinder with a hemisphere on top.

The bollard has

- · diameter 24 centimetres
- · height 70 centimetres.

Calculate the volume of the bollard.

Give your answer correct to 3 significant figures.

2. A toy company makes juggling balls in the shape of a sphere with a diameter

Volume of Cylinder

Volume of Cone

Volume of Pyramid

Volume of Sphere

A spherical sweet is made by coating a caramel sphere evenly with chocolate.A cross-section of the sweet is shown below.

The diameter of the sweet is 24 millimetres and the thickness of the chocolate coating is 3 millimetres.

Calculate the volume of the chocolate coating.

Give your answer correct to 3 significant figures.

4. A child's toy is in the shape of a hemisphere with a cone on top, as shown in the diagram.

The toy is 10 centimetres wide and 16 centimetres high.

Calculate the volume of the toy.

Give your answer correct to 2 significant figures.

A square based pyramid is shown in the diagram below.

The square base has length 6 centimetres. The volume is 138 cubic centimetres. Calculate the height of the pyramid.

Answers

Rounding

- 1 (a) 10000 (b) 50000 (c) 70000 (d) 80000 (e) 100000 (f) 300000 2. (g) 900000 (h) 200000 (i) 500000 (j) 10000000
- **3.** (a) 840 (b) 670 (c) 130 (d) 2800 (e) 9300 (f) 1400 (g) 300 (h) 500 (i) 1000 (k) 3800 (k) 49000 (l) 14 (m) 58 (n) 50
- (a) 3 (b) 3 (c) 6 (d) 50 (e) 60 (f) 80 (g) 90
 - (h) 100 (i) 8 (j) 10 (k) 70 (l) 6000 (m) 50 (n) 100
- (a) 9430 (b) 1890 (c) 2500 (d) 3.23 (e) 37800 (f) 57100 (g) 7.01
 - (h) 51.6 (i) 0.903 (j) 2.79 (k) 0.0891 (l) 0.00781 (m) 9910 (n) 0.601

Percentages (Comp Int, App, Dep)

- 1, £4410
- **2.** 26620
- 3. 149.609 Litres
- **4.** 419.4cm or 4.194m **5**. £124229.69
- **6.** 8698

Reverse Percentages

- 1. 20
 - **2.** a) 120, b) 84
- **3.** 30
- **4.** 35g
- **5.** 3 200 000
- **6.** £2000
- **7.** £26
- 8.600

Fractions

- 1. (a) $2\frac{1}{a}$
- (b) $1\frac{2}{5}$
- (c) $2\frac{1}{2}$

- (d) $1\frac{1}{7}$ (e) $1\frac{2}{3}$ 2. a) $\frac{2}{5}$ b) $\frac{1}{8}$ c) $\frac{3}{4}$ d) $\frac{3}{4}$ e) $\frac{3}{10}$ f) $\frac{1}{7}$ g) $\frac{6}{11}$ h) $\frac{2}{5}$ i) $\frac{7}{12}$

- (f) $3\frac{1}{2}$
- (g) $11\frac{1}{3}$ (h) $2\frac{3}{4}$
- (i) $1\frac{3}{9}$
- (j) $2\frac{1}{4}$

- j) $\frac{7}{8}$ k) $\frac{1}{5}$ l) $\frac{1}{4}$ m) $\frac{3}{7}$ n) $\frac{1}{3}$ o) $\frac{1}{9}$ p) $\frac{16}{25}$ q) $\frac{17}{7}$ r) $\frac{4}{3}$

(k) $1\frac{3}{10}$

3. (a) $2\frac{1}{6}$

- (l) $2\frac{1}{6}$ (m) $2\frac{2}{7}$ (n) $5\frac{1}{10}$
- (o) $3\frac{1}{11}$
- 4. (a) $\frac{5}{12}$
- (b) $\frac{1}{2}$
- (c) $1\frac{1}{9}$
- (d) $1\frac{3}{4}$

- (e) $3\frac{5}{6}$
- $(f) \frac{8}{9}$

(b) $2\frac{1}{0}$

(g) $3\frac{1}{18}$

(c) $\frac{17}{20}$

(h) $3\frac{1}{24}$

(d) $\frac{3}{8}$

- (e) $\frac{5}{6}$
- (f) $2\frac{1}{12}$
- (g) $7\frac{2}{3}$
- (h) $1\frac{5}{99}$

- (i) $5\frac{23}{30}$
- (j) $1\frac{20}{63}$
- (k) $2\frac{7}{60}$
- (1) $7\frac{13}{15}$
- (i) $6\frac{7}{30}$
- (j) $3\frac{2}{3}$
- (k) $7\frac{13}{16}$
- (l) $9\frac{1}{7}$

- 5. (a) $\frac{10}{27}$
- (c) $4\frac{6}{7}$
- (d) $\frac{14}{33}$
- (e) $1\frac{7}{17}$ (f) $1\frac{43}{87}$ (g) $3\frac{5}{12}$

Median and IQR

- 1. Median = 7, IQR = 6
- 2. Median = 15, IQR = 4
- 3. Median = 18, IQR = 10
- 4. Median = 7, IQR = 7 5. Median = 52, IQR = 20

- 6. Median = 49, IQR = 14
- Applying Question.(a) $Q_2\!=\!37$, $Q_1\!=\!29$ & $Q_3\!=\!41$ IQR = 12(b) median lower, more spread of times

Mean and SD

- 1. Mean = 18, SD = 3.35
- 2. Mean = 8, SD = 2.58
- 3. Mean = 3.6, SD = 1.56
- 4. Mean 108, SD = 3.4
- 5. Mean = 55, SD = 5.6

- 6. Mean = 18, SD = 3.35
- $\mbox{Applying Question =} \quad \frac{\overline{x} = 119, s = 1\cdot 58 \mbox{ (b) Competition (c) Mean up by} }{4, \mbox{Standard deviation the same}. }$

<u>Algebra</u>

- A) 1. 5x 19
- 2. 21w 25t + 11
- 3. $x^2 + 10x + 24$ 4. $x^2 15x + 56$
- **5.** $6x^2 + 5x 4$ **6.** $5x^2 13x + 6$

- B) 1. $x^3 + 5x^2 + 7x + 3$ 2. $3x^3 + 11x^2 + 9x 2$ 3. $2x^3 5x^2 + 5x + 4$ **6.** $2x^3 - 5x^2 - 6x + 9$

 - 7. $6x^3 + 10x^2 7x + 1$ 8. $x^3 8x^2 + 13x 6$
- **4.** $x^3 + 3x^2 8x 4$ **5.** $x^3 8x^2 + 5x + 50$

Volume

- 1. $V = 29\,900\,cm^3$
- 2. $140 \ cm^3$
- 3. $4180 \ mm^3$
- 4. $550 cm^3$
- **5.** 11.5*cm*