ADVANCED HIGHER MATHEMATICS
Exam Questions on Further Differentiation
1.
Given 
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2.
Differentiate 
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3.
Differentiate 
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4.
Differentiate the function 
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5.
Differentiate the function 
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6.
Differentiate 
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7.
Differentiate 
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8.
Differentiate 
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9.
The function g is defined by
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Verify that the second derivative of g is given by
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where C is a constant. State the value of C.


Explain why the graph of g has no points of inflexion.
10.
Obtain 
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dy

 when y is defined as a function of x by the equation
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11.
For 
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, use implicit differentiation to find 
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12.
The equation 
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 defines a curve passing through the point A(1, 2).


Obtain the equation of the tangent to the curve at A.
13.
A curve has equation 
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(a)
Use implicit differentiation to find 
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 in terms of x and y.

(b)
Hence find the equation of the tangent to the curve at the point (1, 1).

14.
The equation 
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 defines a curve passing through the point A(2, 1). 
Obtain the equation for the tangent to the curve at A.

15.
Calculate the gradient of the curve defined by 
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 at the point (3, −1).

16.
A curve is defined by the equation 
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(a)
Use implicit differentiation to find 
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dy

.


(b)
Hence find the equation of the tangent to the curve where 
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17.
A curve is defined by 
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Use implicit differentiation to find the gradient of the tangent when 
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18.
Given the equation 
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 of a curve, obtain the x-coordinate of each point at which the curve has a horizontal tangent.

19.
Given 
[image: image33.wmf]4

=

-

x

xy

, use implicit differentiation to obtain 
[image: image34.wmf]dx

dy

 in terms of x and y.


Hence obtain 
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 in terms of x and y.

20.
A curve has equation 
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Find the values of 
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 and 
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 at the point ((2, 3).

21.
The height of a cube is increasing at the rate of 5 cms(1.


Find the rate of increase of the volume when the height of the cube is 3 cm.

22.
An engineer has designed a lifting device. The handle turns a screw which shortens the horizontal length and increases the vertical height.

                                   [image: image39.png]




The device is modelled by a rhombus, with each side 25 cm.


The horizontal length is x cm, and the vertical height is h cm as shown.

                                  [image: image40.png]



(a) Show that 
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(b) The horizontal length decreases at a rate of 0∙3 cm per second as the handle is turned.

Find the rate of change of the vertical height when 
[image: image42.wmf]30

=

x

.

23.
A spherical balloon is being inflated. When the radius is 10 cm the surface area is increasing at a rate of 
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Find the rate at which the volume is increasing at this moment.


(Volume of sphere
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24.
The radius  of a cylindrical column of liquid is decreasing at the rate of 0∙02 ms(1, while the height is increasing at the rate of 0∙01 ms(1.


Find the rate of change of the volume when the radius is 0∙6 metres and the height is 

2 metres.


[Recall that the volume of a cylinder is given by 
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25.
Given 
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26.
For 
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27.
Obtain the derivative of the function 
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28.
Given 
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Write your answer in terms of x.
29.
A curve is defined by the equation 
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Use logarithmic differentiation to find 
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 in terms of x.


Hence calculate the gradient of the curve when 
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30.
Given 
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State the values of a and b.
31.
Find 
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32.
A curve is given by the parametric equations





[image: image64.wmf]t

x

6

=

     and     
[image: image65.wmf]t

y

cos

1

-

=

.


Find 
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33.
Given 
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34.
Given 
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35.
Given 
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36.
A curve is defined parametrically by 
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Obtain 
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 as a function of t.
37.
A curve is defined by the equations
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Find the gradient of the curve when 
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38.
A particle moves along a curve in the x-y plane. The curve is defined by the parametric equations
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where t is the time elapsed since the start.


Find 
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 in terms of t and hence obtain the equation of the tangent to the curve when 
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39.
A curve is defined by the equations
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Use parametric differentiation to find 
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 in terms of 
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Find the equation of the tangent to the curve at the point where 
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40.
On a suitable domain, a curve is defined parametrically by 
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Find the equation of the tangent to the curve where 
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41.
A curve is defined by the parametric equations 
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Find the value of t corresponding to the point (0, –3) and calculate the gradient of the curve at this point.

42.
A curve is defined by the parametric equations
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for all t. Show that the point A(
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, 5) lies on the curve and obtain the equation of the tangent to the curve at the point A.

43.
The motion of a particle is defined by the equations 
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where t is the time elapsed since the start of motion.


Find the instantaneous speed of the particle when 
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44.
The position of a particle at time t is given by the parametric equations
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(a) Find an expression for the instantaneous speed of the particle at time t.

(b) The diagram below shows the path that the particle takes.

                                    [image: image109.png]



Calculate the instantaneous speed of the particle at point A.

45.
A cycloid curve is defined by the parametric equations
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46.
A curve is defined parametrically, for all t, by the equations
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Obtain 
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Find the values of t at which the curve has stationary points and determine their nature.


Show that the curve has exactly two points of inflexion.

47.
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Show that 
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Obtain the equation of the tangent to the curve which passes through the point of inflexion.

48.
A curve is defined by the parametric equations 
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Use parametric differentiation to find 
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Hence find the equation of the tangent when 
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(b)
Obtain an expression for 
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k is an integer. State the value of k.
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