ADVANCED HIGHER MATHEMATICS
Solutions to Exam Questions on Differential Equations 2
1.
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The differential equation is a first order linear differential equation of the form 
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 and is solved by using an integrating factor.
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Integrating Factor:   
[image: image7.wmf]x

e

e

e

x

I

x

dx

x

dx

x

P

=

=

ò

=

ò

=

ln

1

)

(

)

(


General Solution:   
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Notes

(1)   
The question states that 
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, so there is no need to include a modulus sign when 

finding 
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(2)   
The integrating factor must be simplified before it can be used to solve the 

differential equation.
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    (b)
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The differential equation is a first order linear differential equation of the form 
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 and is solved by using an integrating factor.
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Integrating Factor:   
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General Solution:   
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[using the answer to (a)]
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Notes

(1)   
The integrating factor must be simplified before it can be used to solve the 

differential equation.

(2)   
The solution does not have to be written in the form 
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 before substituting the 

values of x and y to find C. You can substitute the values of x and y at any time after you are finished integrating.

3.
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The differential equation can be written in the form 
[image: image59.wmf])

(

)

(

x

Q

y

x

P

dx

dy

=

+

 and is then  solved by using an integrating factor.
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Integrating Factor:   
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General Solution:   
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At the point (1, 3) where 
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Notes

(1)  
The integrating factor must be simplified before it can be used to solve the 

differential equation.

(2)   
The solution does not have to be written in the form 
[image: image88.wmf])

(

x

f

y

=

 before substituting the 

values of x and y to find C. You can substitute the values of x and y at any time after you are finished integrating.

4.
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The differential equation can be written in the form 
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 by dividing all the terms in the equation by x and is then  solved by using an integrating factor.
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Integrating Factor:   
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General Solution:   
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Notes

(1)   
The integrating factor must be simplified before it can be used to solve the 

differential equation.

(2)   
The solution does not have to be written in the form 
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 before substituting the 

values of x and y to find C. You can substitute the values of x and y at any time after you are finished integrating.

5.
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The differential equation can be written in the form 
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 by dividing all the terms in the equation by x and is then  solved by using an integrating factor.



[image: image120.wmf]4

3

x

y

dx

dy

x

=

-

   
[image: image121.wmf]Þ

   
[image: image122.wmf]3

3

x

x

y

dx

dy

=

-

   
[image: image123.wmf]Þ

   
[image: image124.wmf]3

3

x

y

x

dx

dy

=

-



[image: image125.wmf]x

x

P

3

)

(

-

=

   and   
[image: image126.wmf]3

)

(

x

x

Q

=


Integrating Factor:   
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General Solution:   
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Hence the particular solution is   
[image: image146.wmf]3

4

x

x

y

+

=

.

Note
The integrating factor must be simplified before it can be used to solve the differential 

equation.

6.
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The differential equation can be written in the form 
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 by multiplying all the terms in the equation by x and is then  solved by using an integrating factor.
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Integrating Factor:   
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General Solution:   
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Hence from (*):   
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