Advanced Higher Mathematics Nightly Questions 
You should attempt a short question every night during the school week.
Your teacher will tell you what question to attempt each night.

The questions will usually take you between 5 and 10 minutes.

Doing a small amount of Advanced Higher Maths every night will improve your knowledge and confidence.

Your teacher will go over the answer to the nightly question in class the next day.
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Given 
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[hint: use the product rule]

3.
Given the curve 
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[hint: use the quotient rule]

4.
Express 
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5.
Differentiate:
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[hint: you may wish to use the laws of logarithms to simplify 
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Express 
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[hint: the denominator contains a repeated linear factor, so let 
[image: image13.wmf]2

2

2

)

1

(

1

)

1

(

3

6

-

+

-

+

=

-

-

+

x

C

x

B

x

A

x

x

x

x

]

8.
Given that 
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9.
Differentiate:
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10.
Given that the quadratic function 
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[image: image19.wmf])

3

)(

1

(

9

2

2

2

+

-

+

+

x

x

x

x

 in partial

fractions.
[hint: let 
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11.
Differentiate 
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12.
Differentiate:

(a)
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13.
Differentiate 
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14.
Express 
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15.
Differentiate:

(a)
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16.
(a)
Given 
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(b)
Differentiate 
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17.
Differentiate 
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18.
y is defined implicitly in terms of x by the equation 
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Use implicit differentiation to find 
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 in terms of x and y.

19.
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20.
Given 
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21.
Given 
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22.
Differentiate:

(a)
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23.
(a)
Given 
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(b)
Use logarithmic differentiation to find 
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 in terms of x.

24.
A curve is defined by the parametric equations 
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Find the gradient of the curve at the point where 
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[hint: use parametric differentiation]

25.
(a)
Use the discriminant to show that the quadratic function 
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(a) Hence express 
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26.
y is defined implicitly in terms of x by the equation 
[image: image56.wmf]xy
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Use implicit differentiation to find 
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 in terms of x and y.

27.
A curve is defined by the parametric equations 
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(a)
Use parametric differentiation to find 
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 in terms of t.

(b)
Hence find the equation of the tangent to the curve at the point where 
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28.
Use the substitution 
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29.
Differentiate:

(a)
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30.
Use the substitution 
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31.
A curve has equation 
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(a)
Use implicit differentiation to find 
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dy

 in terms of x and y.
(b)
Find the equation of the tangent to the curve at the point A(2, 1).

32.
Use the substitution 
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33.
A curve is defined by the parametric equations 
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Find the equation of the tangent to the curve at the point where 
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34.
(a)
Find 
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[hint: use 
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35.
(a)
Express 
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(b)
Hence find
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36.
Use integration by parts to find 
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37.
Differentiate each function with respect to x:
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38.
Use integration by parts to evaluate 
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39.
Find the general solution of the differential equation 
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40.
In a town with a large population, a ‘flu virus is spreading rapidly.

The percentage, P, of the population infected t days after the initial outbreak satisfies the

differential equation
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where k is a constant.

(a)
Find the general solution of this differential equation, expressing P in terms of t.

(b)
Given that 0∙5% of the population are initially infected and 2∙5% are infected after 

7 days, find the value of k correct to 4 decimal places.

41.
A curve is defined by the parametric equations 
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(a)
Use parametric differentiation to find 
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 in terms of t.

(b)
Hence find the coordinates of the two stationary points on the curve.

[You do not need to determine the nature of the stationary points.]

42.
(a)
Express 
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Hence evaluate 
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43.
Use integration by parts twice to find 
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44.
Use an integrating factor to find the general solution of the first order linear differential equation
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45.
(a)
Given that the quadratic function 
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(b)
Hence find 
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46.
Use the substitution 
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47.
Find the general solution of the differential equation 
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48.
Differentiate and simplify where possible:
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49.
Find the general solution of the following second order differential equation:
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50.
A curve has equation 
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Find the value of 
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 at the point (2, (3).   [hint: use implicit differentiation]

51.
(a)
Use the binomial theorem to expand 
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(b) Differentiate 
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52.
Expand and simplify 
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53.
Find the general solution of the second order differential equation
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54.
Solve the quadratic equation 
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[hint: use the quadratic formula]

55.
The complex numbers z and w are given by 
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56.
A curve is defined by the parametric equations 
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Use parametric differentiation to find 
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 in terms of t.

57.
Given 
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58.
(a)
Given the complex number 
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(b)
The complex number w is given by 
[image: image131.wmf]i

i

w

-

+

=

7

)

2

1

(

2

.

Express w in the form 
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59.
Find the particular solution of the differential equation 
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60.
An arithmetic sequence begins 2, 6, 10, 14, ...

(a)
Find 
[image: image136.wmf]30
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(b)
Find 
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, the sum of the first 30 terms of this sequence.

61.
A mathematical biologist believes that the differential equation 
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 models a process. Use an integrating factor to find the general solution of the differential equation.


[hint:  first rewrite the differential equation in the standard form 
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62.
(a)
Express 
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(b)
Hence find 
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63.
(a)
Write down the common ratio of the geometric sequence beginning 

24, (12, 6, (3, ...

(b)
Explain why the associated geometric series has a sum to infinity.

(c) Find the sum to infinity.

64.
(a)
Verify that 
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(b)
Write down a second root of the equation and then find the third root.

65.
(a)
Use the substitution 
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(b)
Evaluate 
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66.
Relative to suitable coordinate axes, the position of a golf ball at time t seconds is (x, y), where x and y are functions of t given by






[image: image147.wmf]t

x

10

=

,

[image: image148.wmf]2

4

20

t

t

y

-

=

 

(
[image: image149.wmf]5

0

£

£

t

),

and x and y are measured in metres.

(a)
Use parametric differentiation to obtain an expression for 
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 in terms of t.

(b)
The speed, v metres per second, of the golf ball at time t seconds is given by
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Use this formula to find the speed of the golf ball after 2 seconds.
67.
The first term of an arithmetic sequence is 2 and the 20th term is 97.

(a)
Find the common difference.

(b)
Find the sum of the first 50 terms of this sequence.

68.
(a)
Use the standard formula for 
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(b)
Hence, or otherwise, evaluate 
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69.
(a)
Write down and simplify the general term in the binomial expansion of 
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(b)
Hence, or otherwise, obtain the coefficient of 
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 in the expansion.

[hint: the general term in the binomial expansion of 
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70.
The equation of a curve is 
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(a)
Write down the equation of the vertical asymptote.

(b)
Find the equation of the non-vertical asymptote.   [hint: use long division first]

71.
Obtain the general solution of the second order differential equation
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72.
The equation 
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Use implicit differentiation to find 
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 in terms of x and y.

73.
Use integration by parts to find:
(a)
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74.
(a)
Find the Maclaurin series for 
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[image: image167.wmf]4

x

.

(b)
Find the Maclaurin series for 
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(c)
Hence find the Maclaurin series for 
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[image: image171.wmf]3

x

.

75.
Find the general solution of the second order differential equation






[image: image172.wmf]x
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76.
(a)
Expand and simplify 
[image: image173.wmf]4
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x

x

.


(b)
Differentiate:
(i)

[image: image174.wmf])

1

ln(

)

(

2

x

e
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=


(ii)

[image: image175.wmf]x
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g
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,   
[image: image176.wmf]0

¹
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77.
Differentiate 
[image: image177.wmf]x

e

x

f

x

2

tan

cos

)

(

=

 and simplify your answer.

78.
(a)
Given the complex number 
[image: image178.wmf]i

z

3

1

-

=

, write down 
[image: image179.wmf]z

 and express 
[image: image180.wmf]2

)

(

z

 in the 

form 
[image: image181.wmf]bi

a

+

, where 
[image: image182.wmf]z

 is the complex conjugate of z.


(b)
The function f is defined on the set of all real numbers by 
[image: image183.wmf]x

x

x

f

sin

)

(

3

=

.

By considering 
[image: image184.wmf])

(

x

f

-

, determine whether the function f is odd, even or neither.

79.
Find 
[image: image185.wmf]ò

+

+

+

+

dx

x
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x

x

)
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)(
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)(

1

(

5

3

.   [hint: use partial fractions]
80.
(a)
Given 
[image: image186.wmf]1

2

sin

3

+

=

x

e

x

y

x

, show that 
[image: image187.wmf])

1
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2

1
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3
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=

x

x

x

y

.

(b)
Use logarithmic differentiation to find 
[image: image188.wmf]dx

dy

 in terms of x.

81.
Find the general solution of the second order differential equation





[image: image189.wmf]x
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82.
(a)
Given 
[image: image190.wmf]4

=

-

x

xy

, use implicit differentiation to find 
[image: image191.wmf]dx

dy

 in terms of x and y.

(b)
Hence find 
[image: image192.wmf]2

2

dx

y

d

 in terms of x and y.

83.
A curve is defined by the parametric equations 
[image: image193.wmf]t

t

x

2

2

1

2

+

=

 and 
[image: image194.wmf]t

t

y

3

3

1
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=

 for all t.

(a)
Use parametric differentiation to find 
[image: image195.wmf]dx

dy

 in terms of t.

(b)
Hence find 
[image: image196.wmf]2

2

dx

y

d

 in terms of t.

84.
Express 
[image: image197.wmf]2

3

6

2

x

xx

+

+

 in partial fractions.     [Hint: start by factorising the denominator]

85.
Use integration by parts twice to find 
[image: image198.wmf]ò

dx

e

x

x

2

2

.

86.
(a)
Write down and simplify the general term in the binomial expansion of  


[image: image199.wmf]10
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ø

ö

ç

è
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+

x
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.

(b)
Hence, or otherwise, obtain the coefficient of 
[image: image200.wmf]8

x

 in the expansion.

[hint: the general term in the binomial expansion of 
[image: image201.wmf]n
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]

87.
A solid is formed by rotating the area under the curve 
[image: image203.wmf]2

4

x

y

-

=

 between 
[image: image204.wmf]0

=

x

 and 
[image: image205.wmf]2

=

x

 through 
[image: image206.wmf]°

360

 about the x-axis.

Calculate the volume of the solid of revolution that is formed.

88.
Use Gaussian elimination to solve the following system of equations.




x +   y + 3z = 2




          2x +   y +   z = 2




          3x + 2y + 5z = 5

89.
The equation of a curve is 
[image: image207.wmf]2

6
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+

+
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=

x

x

x

y

, 
[image: image208.wmf]2

-

¹

x

.

(a)
Write down the equation of the vertical asymptote.

(b)
Find the equation of the non-vertical asymptote.   [hint: use long division first]

(c)
Find the coordinates of the stationary points on the curve and justify their nature.

90.
The velocity, v metres per second, of a particle moving in a straight line, t seconds after passing through a fixed point O is






[image: image209.wmf]3
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t
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v

,     
[image: image210.wmf]0

³

t

.

(a)
Find the acceleration of the particle when t = 3.
(b)
Find the displacement of the particle from O when t = 4.

91.
(a)
Given the complex number 
[image: image211.wmf]i

z

3

1

+

-

=

, find the modulus and argument of z and 

hence write z  in polar form.


(b)
The function f is defined on the set of all real numbers by 
[image: image212.wmf]x

x

x

f

cos

)

(

2

=

.

By considering 
[image: image213.wmf])

(

x

f

-

, determine whether the function f is odd, even or neither.

92.
(a)      Express 
[image: image214.wmf])

1

(

1

y

y

-

 in partial fractions.

(b)      Show that the general solution of the differential equation 






[image: image215.wmf])

1

(

y

y

dx
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-

=


can be expressed in the form






[image: image216.wmf]C
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)

1
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ln


for some constant C.

(c)      Given that 
[image: image217.wmf]2

1

=

y

 when 
[image: image218.wmf]0

=

x

, find the value of C and hence show that 
[image: image219.wmf]x

x

e

e

y
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=

1

.

93.
(a)
Expand and simplify 
[image: image220.wmf]4

2
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ø

ö

ç

è

æ

-

x

x

.

(b)
Use Gaussian elimination to solve the following system of equations.





x + y = 4





x + 2y − z = 5





3y − 2z = 6

94.
Let A be the matrix 
[image: image221.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

4

2

2

1

A

.

(a)
Show that 
[image: image222.wmf]pA

A

=

2

 for some constant p.


(b)
Hence, or otherwise, determine the value of q such that 
[image: image223.wmf]qA

A

=

4

.

95.
(a)
Write the complex number 
[image: image224.wmf]i

z

+

=

3

 in polar form.

(b)
Use de Moivre’s theorem to find 
[image: image225.wmf]6

z

 in the form 
[image: image226.wmf]bi

a

+

.

96.
A car begins from rest and travels along a straight road.

The velocity, v metres per second, of the car is given by 
[image: image227.wmf]11

2

100

+

=

t

t

v

, where t is the time in seconds.

Find the acceleration of the car after 4 seconds.

97.
Consider the system of equations





     x + y + z = 2




          4x + 3y ( 
[image: image228.wmf]z

l

  = 4




           5x + 6y + 8z = 11.

(a)
Use Gaussian elimination to express 
[image: image229.wmf]z

 in terms of 
[image: image230.wmf]l

 and hence state the value of 
[image: image231.wmf]l

 for which the system has no solution.

(b)
Solve the system of equations when 
[image: image232.wmf]2

=

l

.

98.
Matrices A and B are defined by 
[image: image233.wmf]÷
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 and 
[image: image234.wmf]÷
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.

(a)
Write down the matrix 
[image: image235.wmf]A

¢

, where 
[image: image236.wmf]A

¢

 denotes the transpose of A.

(b)
Find the values of p and q if 
[image: image237.wmf]A

B

¢

=

3

.

99.
(a)
Write the complex number 
[image: image238.wmf]i

3

2

2

+

 in polar form.

(b)
Hence find the two complex numbers z for which 
[image: image239.wmf]i

z

3

2

2

2

+

=

, expressing each root in the form 
[image: image240.wmf])
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.

100.
Let 
[image: image241.wmf]ò

=

xdx

e

I

x

cos

2

.

By integrating by parts twice, show that 
[image: image242.wmf]C
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e
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=

)
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2
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.

101.
The area bounded by the curve with equation 
[image: image243.wmf]x

e

y

2

-

=

 between 
[image: image244.wmf]0

=

x

 and 
[image: image245.wmf]1

=

x

 is rotated through 
[image: image246.wmf]°

360

 about the x-axis.

Find the exact value of the volume of the solid formed.
102.
A particle moves along a straight line.

The velocity, v metres per second, of the particle after t seconds is given by






[image: image247.wmf]t
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.

(a)
Find an expression for the acceleration of the particle after t seconds.

(b)
At time 
[image: image248.wmf]0

=

t

, the particle is at the origin O.

(i) Find an expression for the displacement of the particle from O after t seconds.

(ii) The particle returns to O after T seconds. Find T.

103.
Let A be the 
[image: image249.wmf]2

2

´

 matrix 
[image: image250.wmf]÷
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ç

ç

è

æ
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=
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A

.

(a)
Find the values of 
[image: image251.wmf]l

 such that the matrix is singular.

[Hint: remember that A is singular when 
[image: image252.wmf]0

det

=

A

]

(b)
Write down the inverse matrix matrix 
[image: image253.wmf]1

-

A

 when 
[image: image254.wmf]3

=

l

.

104.
(a)
Solve the following system of equations using Gaussian elimination.





2x + y + 3z = (5




            (x       + 2z = (3





4x + 3y + z =   3


(b)
Use the substitution 
[image: image255.wmf]4
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=

 to find 
[image: image256.wmf]ò

+

dx
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.

105.
(a)
Given u = –2i + 5k, v = 3i + 2j – k and w = –i + j + 4k, calculate u . (v × w).

(b)
Find the point of intersection of the line






[image: image257.wmf]2
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and the plane with equation 
[image: image258.wmf]4

2

=

-

+

z

y

x

.



[Hint: express the equation of the line in parametric form first]

106.
The complex number z is such that 
[image: image259.wmf]i

z

z

+

=

-

2

, where 
[image: image260.wmf]yi

x

z
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=

.

Find the equation of the locus of z in the form 
[image: image261.wmf]0
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by
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.
107.
When a valve is opened, the rate at which water drains from a pool is proportional to the square root of the depth of the water.

This can be represented by the differential equation 
[image: image262.wmf]10

h

dt

dh

-

=

, where h is the depth (in metres) of the water and t is the time (in minutes) elapsed since the valve was opened.

(a)
Show that 
[image: image263.wmf]20

t

C

h

-

=

 for some constant C.   [hint: separate the variables]

(b)
Given that the water was initially 9 metres deep when the valve was opened, find the value of C and hence find the time taken to drain the pool.

108.
Obtain the equation of the plane passing through the points A((2, 1, (1), B(1, 2, 3) and 

C(3, 0, 1).

[Hint: find the vectors 
[image: image264.wmf]AB

 and 
[image: image265.wmf]AC

, then the normal vector is n
[image: image266.wmf]AC

AB

´

=

]

109.
Find the values of m for which the matrix
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is singular.


[Hint: remember that A is singular when 
[image: image268.wmf]0

det

=

A

]

110.
(a)
Write down and simplify the general term in the binomial expansion of 


[image: image269.wmf]9

2

1

2

÷

ø

ö

ç

è

æ

+

x

x

.

(b)
Hence, or otherwise, obtain the term independent of x in the expansion.

[hint: the general term in the binomial expansion of 
[image: image270.wmf]n
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111.
Consider the system of equations





            4x + 6z = 1




                2x − 2y + 4z = (1




                 (x + y + 
[image: image272.wmf]z

l

= 2

Use Gaussian elimination to express 
[image: image273.wmf]z

 in terms of 
[image: image274.wmf]l

 and hence state the value of 
[image: image275.wmf]l

 for which the system has no solution.

112.
The lines 
[image: image276.wmf]1

L

 and 
[image: image277.wmf]2

L

 are given by the equations





[image: image278.wmf]1
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   and   
[image: image279.wmf]2
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,

respectively.

(a)
Show that 
[image: image280.wmf]1

L

 and 
[image: image281.wmf]2

L

 intersect and find the point of intersection.



[Hint: first express the equations of both lines in parametric form]

(b)
Calculate the acute angle between the lines.
113.
(a)
Use the Euclidean algorithm to obtain the greatest common divisor of 1139 and 

629.

(b)
Express the greatest common divisor in the form 
[image: image282.wmf]q

p

629

1139

+

 for integers p 

and q.

114.
(a)
Use a direct proof to prove that the product of an odd integer and an even integer 

is always even.



[Hint:
Let a be an odd integer, so that 
[image: image283.wmf]1

2

+

=

k

a

 for some integer k.




Let b be an even integer, so that 
[image: image284.wmf]m

b

2

=

 for some integer m.]

(b)
Prove by contradiction that if 
[image: image285.wmf]2

n

 is even, then n is also even, where n is a natural number.


[Hint:
Let 
[image: image286.wmf]2

n

 be even and assume that n is odd.]

115.
Prove by induction that for all positive integers n, 
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116.
(a)
Verify that 
[image: image288.wmf]i
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=

 is a root of the equation 
[image: image289.wmf]0
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.


(b)
Hence find all the roots of this equation.

117.
The twenty-first term of an arithmetic sequence is 37.

The sum of the first twenty terms of the sequence is 320.


What is the sum of the first ten terms?
118.
Three vectors u, v and w are given by




u = 5i + 13j,   v = 2i + j + 3k,   w = i + 4j – k.


Calculate u . (v × w) and interpret your answer geometrically.

119.
The 
[image: image290.wmf]3
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 matrix A is given by 
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(a) Obtain an expression for 
[image: image292.wmf]A

det

 in terms of 
[image: image293.wmf]l

.

(b) Hence find the value of 
[image: image294.wmf]l

 for which the matrix A is singular.

120.
Prove by induction that for all positive integers n, 
[image: image295.wmf]å
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121.
An arithmetic sequence begins 5, 7, 9, 11, ...

(a) Find a formula for 
[image: image296.wmf]n

S

, the sum of the first n terms of this sequence.

(b) Hence find the value of n for which 
[image: image297.wmf]320

=

n

S

.
122.
Plane 
[image: image298.wmf]1

p

 has equation 
[image: image299.wmf]5
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 and plane 
[image: image300.wmf]2

p

 has equation 
[image: image301.wmf]0

=

-

+

z

y

x

.

Calculate the size of the acute angle between the planes 
[image: image302.wmf]1

p

 and 
[image: image303.wmf]2

p

.

[Hint: the angle between two planes is the angle between their normal vectors]

123.
Prove by induction that for all positive integers n, 
[image: image304.wmf]3
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+

n

 is divisible by 4.

124.
Show that the line of intersection of the planes 
[image: image305.wmf]6
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 and 
[image: image306.wmf]2
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 has parametric equations
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[Hint:   let 
[image: image310.wmf]l

=

x

 in the equation of each plane and solve the system of equations for 

                         y and z]

125.
Let A be the 
[image: image311.wmf]2
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 matrix 
[image: image312.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

1

2

4

l

A

.

(a) Find 
[image: image313.wmf]2

A

.

(b) Find the value of 
[image: image314.wmf]l

 for which 
[image: image315.wmf]2

A

 is singular.

[Hint: remember that 
[image: image316.wmf]2

A

 is singular when 
[image: image317.wmf]0
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]

126.
(a)
Write down the 
[image: image318.wmf]2

2

´

 matrix 
[image: image319.wmf]1

M

 associated with an anti-clockwise rotation of 
[image: image320.wmf]2

p

 

radians about the origin.


(b)
Write down the matrix 
[image: image321.wmf]2

M

 associated with reflection in the y-axis.

(c) Find the 
[image: image322.wmf]2

2

´

 matrix, 
[image: image323.wmf]3

M

, associated with an anti-clockwise rotation of 
[image: image324.wmf]2

p

 radians about the origin followed by reflection in the y-axis.
(d) What single transformation is associated with the matrix 
[image: image325.wmf]3

M

?

127.
(a)
Find the general solution of the second order differential equation
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(b)
When 
[image: image327.wmf]0
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[image: image329.wmf]3
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.



Find the particular solution of the differential equation.
128.
(a)
Obtain the general solution of the second order differential equation
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(b)
Hence find the particular solution for which 
[image: image331.wmf]0

=

y

 and 
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 when 
[image: image333.wmf]0
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.
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