MILLIS UNIVERSITY COLLEGE ACollege of Queen's University Belfat	TAPS-NI Progression in Science S	kills	BATTH SP UNIVERSI
Topic:	Primary 6/7	Activity title:	
Titanic	Age 9-11 years	Titanic pulleys	
Science skill focus	Curriculum link: Movement and Energy		-

Doing: using equipment/techniques to measure accurately

Curriculum link: Movement and Ene The causes and effect of energy, forces and movement (ME1)

Progression Focus

STRAN

Can children choose appropriate equipment and techniques to measure accurately?
Can children use their results to make and test predictions?

Activity *Today we are engineers.* (*Reference: Titanic Science by Jim McDaid, 2014*) Key question: many heavy materials were needed to build Titanic, how were they lifted?

Ask the children to find out how much force is needed to lift different sized tins/objects. (Tie string around and lift by hooking with a forcemeter). A range of forcemeters could be provided for children to choose from. Note the importance of measuring accurately in Newtons and recording clearly, so can see how much difference a pulley makes next.

Use a pulley to help lift the can (place string over pulley wheel or cotton reel). Can you feel a difference? Use the forcemeter to measure - how much does it reduce the force? Use test results to predict for other cans/objects.

(Using 2 pulley wheels should halve the force needed to lift).

Adapting the activity

Support: provide pictures of how to set up the pulley.

Extension: include more pulley wheels.

Other ideas: What is used now to lift heavy weights? Investigate hydraulics and pneumatics.

Questions to support discussion

- Why did you choose that forcemeter?
- How accurate do you think your measurements are?
- How does the force required to lift the tins change when you use the pulley(s)?
- Can you predict the force when an extra tin/pulley is added?
- What difference does adding further pulleys make to the force required to lift the tin(s)?

Pupil learning indicators

Not fully achieved: Pupils explore the pulleys but are not systematic in their approach or accurate in their measurements (e.g. choose a forcemeter which is not sensitive enough).

Achieved: Pupils use a pulley system to lift a weight and have a structured approach to measuring. They measure the reduced force carefully in Newtons and can predict the force needed to lift with/out pulleys.

Exceeded: Pupils recognise the link between pulleys and force required to lift a weight. They investigate adding extra pulleys to their system and can predict force required for different pulley systems.

