Chemistry in society			
Controlling the rate			
(i) Collision theory	RP1	RP2	RP3
Reaction rates must be controlled in industrial processes.	Y/N	Y/N	y/N
If the rate is too low then the process will not be economically viable ; if it is too high there will be a risk of explosion .	y/N	Y/N	y/N
Calculations can be performed using the relationship between reaction time and relative rate with appropriate units .	Y/N	Y/N	y/N
Collision theory can be used to explain the effects of the following on reaction rates:			
◆ concentration	Y/N	Y/N	Y/N
♦ pressure	Y/N	y/N	Y/N
 surface area (particle size) 	Y/N	Y/N	Y/N
◆ temperature	Y/N	Y/N	Y/N
♦ collision geometry	Y/N	Y/N	y/N
(ii) Reaction pathways			
A potential energy diagram can be used to show the energy pathway for a reaction.	y/N	y/N	Y/N
The enthalpy change is the energy difference between the products and the reactants .	Y/N	y/N	y/N

The enthalpy change has a negative value for exothermic reactions or a positive value for endothermic reactions.	Y/N	Y/N	Y/N
The activation energy is the minimum energy required by colliding particles to form an activated complex and can be calculated from potential energy diagrams.	Y/N	Y/N	Y/N
The activated complex is an unstable arrangement of atoms formed at the maximum of the potential energy barrier , during a reaction.	y/N	y/N	Y/N
A catalyst provides an alternative reaction pathway with a lower activation energy.	Y/N	Y/N	Y/N
A potential energy diagram can be used to show the effect of a catalyst on activation energy.	Y/N	Y/N	Y/N
(iii) Kinetic energy distribution			
Temperature is a measure of the average kinetic energy of the particles in a substance.	y/N	Y/N	Y/N
The activation energy is the minimum kinetic energy required by colliding particles before a reaction may occur.	Y/N	Y/N	y/N
Energy distribution diagrams can be used to explain the effect of changing temperature on the kinetic energy of particles and reaction rate.	Y/N	Y/N	Y/N
The effects of temperature and of adding a catalyst can be explained in terms of a change in the number of particles with energy greater than the activation energy .	Y/N	y/N	Y/N
		l	

Chemistry in society			
Getting the most from reactants			
	RP1	RP2	RP3
Industrial processes are designed to maximise profit and minimise the impact on the environment .	Y/N	y/N	y/N
 Factors influencing industrial process design include: availability, sustainability and cost of feedstock(s) opportunities for recycling energy requirements marketability of by-products 			
 product yield 	Y/N	Y/N	Y/N
 Environmental considerations include: minimising waste avoiding the use or production of toxic substances designing products which will biodegrade if appropriate 	y/N	y/N	Y/N
Chemical equations, using formulae and state symbols, can be written and balanced to show the mole ratio(s) of reactants and products.	Y/N	Y/N	Y/N
The mass of a mole of any substance, in grams (g), is equal to the gram formula mass and can be calculated using relative atomic masses.	Y/N	Y/N	Y/N
Calculations can be performed using the relationship between the mass and the number of moles of a substance.	Y/N	y/N	Y/N
For solutions, the mass of solute (grams or g), the number of moles of solute (moles or mol), the volume of solution (litres or l), or the concentration of the solution (moles per litre or mol l ⁻¹), can be calculated from data provided.	Y/N	y/N	Y/N
calculated from data provided.			

The molar volume (litres mol ⁻¹) is the volume occupied by one mole of any gas at a certain temperature and pressure.	Y/N	y/N	Y/N
The molar volume is the same for all gases at the same temperature and pressure .	Y/N	y/N	Y/N
Calculations can be performed using the relationship between the volume of gas , molar volume and the number of moles of a substance.	Y/N	y/N	Y/N
Calculations can be performed given a balanced equation using data including:			
◆ gram formula masses (GFM)	Y/N	y/N	y/N
◆ masses	Y/N	Y/N	y/N
 numbers of moles 	Y/N	Y/N	Y/N
 concentrations and/or volumes of solutions 	Y/N	Y/N	y/N
 molar volumes 	Y/N	Y/N	Y/N
♦ volumes for gases	Y/N	Y/N	Y/N
The efficiency with which reactants are converted into the desired product is measured in terms of the percentage yield and atom economy.	Y/N	Y/N	Y/N
By considering a balanced equation , the limiting reactant and the reactant(s) in excess can be identified by calculation .	Y/N	y/N	Y/N
In order to ensure that a costly reactant is converted into product, an excess of the less expensive reactant(s) can be used .	y/N	Y/N	Y/N

The ' theoretical yield ' is the quantity of desired product obtained , assuming full conversion of the limiting reagent, as calculated from the balanced equation.	Y/N	Y/N	Y/N
The 'actual yield' is the quantity of the desired product formed under the prevailing reaction conditions.	Y/N	Y/N	Y/N
For a particular set of reaction conditions, the percentage yield provides a measure of the degree to which the limiting reagent is converted into the desired product .	Y/N	Y/N	Y/N
The percentage yield can be calculated using the equation :			
% yield = Actual yield × 100 Theoretical yield	Y/N	Y/N	Y/N
Using a balanced equation , calculations involving percentage yield can be performed from data provided .	Y/N	Y/N	Y/N
Given costs for the reactants, a percentage yield can be used to calculate the cost of reactant(s) required to produce a given mass of product.	Y/N	Y/N	Y/N
The atom economy measures the proportion of the total mass of all starting materials converted into the desired product in the balanced equation.	Y/N	Y/N	Y/N
The percentage atom economy can be calculated using the equation :			
% atom economy = <u>Mass of desired product</u> × 100 Total mass of reactants	Y/N	Y/N	Y/N
Reactions which have a high percentage yield may have a low atom economy value if large quantities of by-products are formed.	Y/N	Y/N	Y/N

Chemistry in society			
Chemical energy			
	RP1	RP2	RP3
Enthalpy is a measure of the chemical energy in a substance.	Y/N	y/N	Y/N
A reaction or process that releases heat energy is described as exothermic .	Y/N	Y/N	Y/N
In industry , exothermic reactions may require heat to be removed to prevent the temperature rising .	Y/N	y/N	Y/N
A reaction or process that takes in heat energy is described as endothermic .	Y/N	y/N	Y/N
In industry, endothermic reactions may incur costs in supplying heat energy in order to maintain the reaction rate.	Y/N	y/N	Y/N
The enthalpy change associated with a reaction can be calculated from the quantity of heat energy released .	Y/N	Y/N	Y/N
The quantity of heat energy released can be determined experimentally and calculated using $E_h = cm \Delta T$.	Y/N	y/N	Y/N
The quantities E_h , c , m or ΔT can be calculated, in the correct units, given relevant data.	Y/N	y/N	Y/N
The enthalpy of combustion of a substance is the enthalpy change when one mole of the substance burns completely in oxygen .	Y/N	y/N	Y/N
Hess's law states that the enthalpy change for a chemical reaction is independent of the route taken.	y/N	y/N	Y/N
The enthalpy change for a reaction can be calculated using Hess's law , given appropriate data.	Y/N	y/N	Y/N

The molar bond enthalpy is the energy required to break one mole of bonds in a diatomic molecule.	Y/N	Y/N	Y/N
A mean molar bond enthalpy is the average energy required to break one mole of bonds, for a bond that occurs in a number of compounds.	Y/N	Y/N	Y/N
Bond enthalpies can be used to estimate the enthalpy change occurring for a gas phase reaction, by calculating the energy required to break bonds in the reactants and the energy released when new bonds are formed in the products	Y/N	Y/N	Y/N

Chemistry in society			
Equilibria			
•	RP1	RP2	RP3
In a closed system , reversible reactions attain a state of dynamic equilibrium when the rates of forward and reverse reactions are equal .	Y/N	Y/N	Y/N
At equilibrium, the concentrations of reactants and products remain constant, but are rarely equal.	y/N	Y/N	Y/N
To maximise profits, chemists employ strategies to move the position of equilibrium in favour of the products.	Y/N	Y/N	Y/N
For a given reversible reaction , the effect of altering temperature or pressure or of adding/removing reactants/products can be predicted.	Y/N	Y/N	Y/N
The addition of a catalyst increases the rates of the forward and reverse reactions equally .	Y/N	Y/N	Y/N
The catalyst increases the rate at which equilibrium is achieved but does not affect the position of equilibrium .	Y/N	Y/N	Y/N

Chemistry in society			
Chemical analysis			
	RP1	RP2	RP3
(i) Chromatography			
Chromatography is a technique used to separate the components present within a mixture.	Y/N	Y/N	Y/N
Chromatography separates substances by making use of differences in their polarity or molecular size .	Y/N	Y/N	Y/N
The details of any specific chromatographic method or experiment are <u>not</u> required .			
Depending on the type of chromatography used, the identity of a			
component can be indicated either by the distance it has travelled, or by the time it has taken to travel through the apparatus (retention time).	Y/N	Y/N	Y/N
The results of a chromatography experiment can sometimes be			
presented graphically, showing an indication of the quantity of substance present on the y-axis and retention time of the x-axis.	Y/N	Y/N	Y/N

(ii) Volumetric analysis			
Volumetric analysis involves using a solution of accurately known concentration in a quantitative reaction to determine the concentration of another substance.	Y/N	Y/N	Y/N
Titration is used to determine, accurately, the volumes of solution required to reach the end-point of a chemical reaction.	y/N	Y/N	Y/N
An indicator is normally used to show when the end-point is reached.	Y/N	Y/N	Y/N
Titre volumes within 0.2 cm^3 are considered concordant.	Y/N	Y/N	Y/N
Solutions of accurately known concentration are known as standard solutions.	Y/N	Y/N	Y/N
Redox titrations are based on redox reactions.	Y/N	Y/N	Y/N
In titrations using acidified permanganate , an indicator is <u>not</u> required , as purple permanganate solution turns colourless when reduced .	Y/N	Y/N	Y/N
Given a balanced equation for the reaction occurring in any titration , the:			
 concentration of one reactant can be calculated given the concentration of the other reactant and the volumes of both solutions 	Y/N	Y/N	Y/N
 volume of one reactant can be calculated given the volume of the other reactant and the concentrations of both solutions 	Y/N	Y/N	Y/N