Nature's Chemistry			
Systematic carbon chemistry			
	RP1	RP2	RP3
Compounds containing only single carbon-carbon bonds are described as saturated .	y/N	Y/N	Y/N
Compounds containing at least one carbon-carbon double bond are described as unsaturated .	y/N	y/N	Y/N
Compounds containing carbon-carbon double bonds can take part in addition reactions.	y/N	Y/N	Y/N
In an addition reaction, two molecules combine to form a single molecule .	y/N	y/N	Y/N
It is possible to distinguish an unsaturated compound from a saturated compound using bromine solution .	y/N	y/N	Y/N
Unsaturated compounds quickly decolourise bromine solution.	y/N	Y/N	y/N
The structure of any molecule can be drawn as a full or a shortened structural formula .	y/N	y/N	Y/N
Isomers:			
 are compounds with the same molecular formula but different structural formulae 	y/N	y/N	y/N
may belong to different homologous series	y/N	Y/N	Y/N
 usually have different physical properties 	y/N	y/N	Y/N
Given the name or a structural formula for a compound, an isomer can be drawn .	y/N	Y/N	Y/N
Isomers can be drawn for a given molecular formula.	Y/N	Y/N	Y/N

The colubility bailing point and valatility (and of evenenation) of			
The solubility, boiling point and volatility (ease of evaporation) of a compound can be predicted by considering:			
 the presence of O-H or N-H bonds, which implies hydrogen bonding 	У/N	Y/N	Y/N
 the spatial arrangement of polar covalent bonds which could result in a molecule possessing a permanent dipole 	У/N	y/N	Y/N
 molecular size which would affect London dispersion forces 	y/N	Y/N	Y/N
the polarities of solute and solvent.	y/N	Y/N	y/N
Polar or ionic compounds tend to be soluble in polar solvents, non- polar compounds tend to be soluble in non-polar solvents	У/N	y/N	Y/N
Solubility, boiling point and volatility can be explained in terms of the type and strength of intermolecular forces present.	У/N	Y/N	Y/N

Nature's Chemistry				
Alcohols				
	RP1	RP2	RP3	
An alcohol is a molecule containing a hydroxyl functional group, —OH group.	y/N	Y/N	Y/N	
Straight-chain and branched alcohols can be systematically				
named, indicating the position of the hydroxyl group from		Y/N	Y/N	
structural formulae containing no more than eight carbon atoms in their longest chain.				
A molecular formula can be written or a structural formula drawn				
from the systematic name of a straight-chain or branched alcohol	Y/N	y/N	Y/N	
that contains no more than eight carbon atoms in its longest chain.				
Alcohols can be classified as primary , secondary or tertiary .	y/N	Y/N	Y/N	
Alcohols containing two hydroxyl groups are called diols, and				
those containing three hydroxyl groups are called triols .	Y/N	Y/N	Y/N	
Hydroxyl groups make alcohols polar and this gives rise to				
hydrogen bonding.	Y/N	Y/N	Y/N	
Hydrogen bonding can be used to explain the properties of				
alcohols, including boiling points, melting points, viscosity and solubility/miscibility in water.	y/N	Y/N	Y/N	

Nature's Chemistry			
Carboxylic acids			
•	RP1	RP2	RP3
A carboxylic acid is a molecule containing the carboxyl functional group, — COOH .	Y/N	y/N	Y/N
Straight-chain and branched carboxylic acids can be systematically named from structural formulae containing no more than eight carbons in the longest chain.	Y/N	У/N	Y/N
A molecular formula can be written or a structural formula drawn from the systematic name of a straight-chain or branched-chain carboxylic acid that contains no more than eight carbon atoms in its longest chain.	y/N	y/N	Y/N
Carboxylic acids can react with bases :	Y/N	Y/N	y/N
metal oxide + carboxylic acid \rightarrow salt + water	Y/N	Y/N	y/N
metal hydroxide + carboxylic acid → salt + water	Y/N	Y/N	Y/N
metal carbonate + carboxylic acid → salt + water + carbon dioxide	Y/N	y/N	Y/N
The name of the salt produced depends on the acid and base used.	Y/N	y/N	y/N

Nature's Chemistry				
Esters, fats and oils				
	RP1	RP2	RP3	
An ester is a molecule containing an ester link : —COO—.	Y/N	Y/N	Y/N	
Esters can be named given the:				
 names of their parent alcohol and carboxylic acid 	Y/N	Y/N	Y/N	
• structural formulae of esters formed from primary, straight- chain alcohols containing no more than eight carbons and straight- chain carboxylic acids containing no more than eight carbons	Y/N	y/N	Y/N	
Molecular formulae can be written and structural formulae drawn for esters given the:				
• systematic names of esters formed from primary, straight-chain alcohols containing no more than eight carbons and straight-chain carboxylic acids containing no more than eight carbons	Y/N	y/N	Y/N	
 structural formulae of their parent alcohol and carboxylic acid 	Y/N	y/N	Y/N	
Esters are used as flavourings and fragrances as many have pleasant, fruity smells .	Y/N	y/N	Y/N	
Esters are also used as solvents for non-polar compounds that do not dissolve in water .	Y/N	y/N	Y/N	
Esters are formed by a condensation reaction between an alcohol and a carboxylic acid .	Y/N	y/N	y/N	
In a condensation reaction, two molecules are joined together with the elimination of a small molecule .	Y/N	y/N	y/N	

When an ester link is formed by the reaction between a hydroxyl group and a carboxyl group, the small molecule eliminated is water .	Y/N	Y/N	Y/N
Esters can be hydrolysed to produce an alcohol and a carboxylic acid .	Y/N	y/N	Y/N
In a hydrolysis reaction, a molecule reacts with water to break down into smaller molecules .	Y/N	y/N	Y/N
The products of the hydrolysis of an ester can be named given the:			
◆ name of the ester	Y/N	Y/N	Y/N
• structural formula of an ester formed from a straight-chain or branched alcohol and a straight-chain or branched carboxylic acid, each containing no more than eight carbons in their longest chain	Y/N	Y/N	Y/N
Molecular formulae can be written and structural formulae can be drawn for the products of the hydrolysis of an ester given the:			
• systematic names of esters formed from primary, straight-chain alcohols containing no more than eight carbons and straight-chain carboxylic acids containing no more than eight carbons	Y/N	Y/N	Y/N
 structural formula of the ester 	Y/N	y/N	Y/N
Edible fats and edible oils are esters formed from the condensation of glycerol (propane1,2,3-triol) and three carboxylic acid molecules.	Y/N	Y/N	Y/N
The carboxylic acids are known as 'fatty acids' and can be saturated or unsaturated straight-chain carboxylic acids, usually with long chains of carbon atoms .	Y/N	Y/N	Y/N
Edible oils have lower melting points than edible fats.	Y/N	y/N	y/N

Double bonds in fatty acid chains prevent oil molecules from packing closely together, so the greater the number of double bonds present, the weaker the van der Waals forces of attraction.	y/N	y/N	y/N
The greater the degree of unsaturation, the lower the melting point.	Y/N	y/N	Y/N
Unsaturated compounds quickly decolourise bromine solution.	Y/N	Y/N	Y/N
The bromine molecules add across the carbon-carbon double bonds in an addition reaction.	Y/N	y/N	Y/N
The greater the number of double bonds present in a substance, the more bromine solution can be decolourised .	Y/N	Y/N	Y/N

Nature's Chemistry			
Proteins			
	RP1	RP2	RP3
Proteins are the major structural materials of animal tissue and are also involved in the maintenance and regulation of life processes .	Y/N	y/N	y/N
Enzymes are proteins which act as biological catalysts.	Y/N	y/N	y/N
Amino acids , the building blocks from which proteins are formed, are relatively small molecules which all contain an amino group,	Y/N		
-NH2, and a carboxyl group, -COOH.		Y/N	Y/N
Proteins are made of many amino acid molecules linked together by condensation reactions.	Y/N	y/N	y/N
In these reactions, the amino group of one amino acid and the carboxyl group of another amino acid join, with the elimination of	Y/N	y/N	y/N
water. The link which forms between two amino acids is known as a peptide link, —CONH—, or also as an amide link.	Y/N		
Proteins which fulfil different roles in the body are formed by	y/N	y/N	Y/N
linking together differing sequences of amino acids.	7718	Y/N	Y/N
The body cannot make all of the amino acids required for protein synthesis and certain amino acids, known as essential amino acids, must be acquired from the diet.	Y/N	y/N	y/N
During digestion, enzyme hydrolysis of protein produces amino	Y/N		
acids.		y/N	Y/N
	1	Y/N	y/N

The structural formulae of amino acids obtained from the hydrolysis of a protein can be drawn given the structure of a section of the protein.	Y/N		
The structural formula of a section of protein can be drawn given the structural formulae of the amino acids from which it is formed.	Y/N	Y/N	Y/N
Within proteins , the long-chain molecules form spirals , sheets , or other complex shapes .	Y/N	Y/N	Y/N
The chains are held in these forms by intermolecular bonding between the side chains of the constituent amino acids.	y/N	Y/N	Y/N
When proteins are heated , these intermolecular bonds are broken , allowing the proteins to change shape (denature) .	Y/N	Y/N	Y/N
The denaturing of proteins in foods causes the texture to change when it is cooked .	Y/N	Y/N	Y/N

Nature's Chemistry				
Oxidation of food				
	RP1	RP2	RP3	
For carbon compounds:				
 oxidation is an increase in the oxygen to hydrogen ratio 	Y/N	Y/N	Y/N	
 reduction is a decrease in the oxygen to hydrogen ratio 	Y/N	Y/N	y/N	
Hot copper(II) oxide or acidified dichromate(VI) solutions can be used to oxidise :				
 primary alcohols to aldehydes and then to carboxylic acids 	Y/N	Y/N	y/N	
 secondary alcohols to ketones 	Y/N	Y/N	Y/N	
During these reactions black copper(II) oxide forms a brown solid , and orange dichromate solution turns green .	Y/N	Y/N	y/N	
Tertiary alcohols cannot be oxidised using these oxidising agents.	y/N	Y/N	y/N	
Aldehydes and ketones are molecules containing a carbonyl functional group C=O.	Y/N	Y/N	y/N	
Straight-chain and branched aldehydes and ketones can be systematically named from structural formulae containing no more than eight carbons in the longest chain.	Y/N	y/N	y/N	
Molecular formulae can be written and structural formulae drawn, from the systematic names of straight-chain and branched aldehydes and ketones, containing no more than eight carbons in	Y/N	y/N	y/N	
the longest chain. Aldehydes, but not ketones, can be oxidised to carboxylic acids.	y/N	y/N	y/N	

Nature's Chemistry			
Fragrances			
-	RP1	RP2	RP3
Essential oils are concentrated extracts of the volatile, non-water soluble, aroma compounds from plants.	Y/N	y/N	y/N
They are mixtures of many different compounds.	Y/N	Y/N	Y/N
They are widely used in perfumes, cosmetic products, cleaning products and as flavourings in foods.	Y/N	y/N	y/N
Terpenes are key components in most essential oils.	Y/N	Y/N	Y/N
They are unsaturated compounds formed by joining together isoprene (2-methylbuta-1,3-diene) units .	Y/N	Y/N	Y/N
Terpenes can be oxidised within plants to produce some of the compounds responsible for the distinctive aromas of spices .	Y/N	y/N	y/N
Given the structural formula for a terpene-based molecule:			
♦ an isoprene unit can be identified within the molecule	Y/N	Y/N	Y/N
the number of isoprene units joined together within the molecule can be stated	Y/N	y/N	y/N

Nature's Chemistry			
Skincare			
	RP1	RP2	RP3
Ultraviolet (UV) radiation is a high-energy form of light , present in sunlight .	y/N	y/N	y/N
UV light can provide sufficient energy to break bonds within molecules.	Y/N	Y/N	y/N
This causes sunburn and accelerates ageing of the skin .	Y/N	Y/N	y/N
Sun-block products prevent UV light reaching the skin.	Y/N	Y/N	y/N
When UV light breaks bonds , free radicals are formed.	Y/N	Y/N	y/N
Free radicals are atoms or molecules that are highly reactive due to the presence of unpaired electrons.	y/N	y/N	y/N
Free radical chain reactions include the following steps : initiation , propagation and termination .	y/N	y/N	y/N
Equations can be written for reactions involving free radicals.	Y/N	Y/N	y/N
An equation involving free radicals can be recognised as representing an initiation , propagation or termination step.	y/N	y/N	y/N
Free radical scavengers are molecules that react with free radicals to form stable molecules and prevent chain reactions from occurring.	Y/N	y/N	y/N
Free radical scavengers are added to many products including cosmetics , food products and plastics .	y/N	y/N	y/N

Oxidising agents can be used to differentiate between an aldehyde and a ketone.	y/N	y/N	y/N
With an aldehyde :			
 blue Fehling's solution forms a brick red precipitate 	Y/N	Y/N	Y/N
 clear, colourless Tollens' reagent forms a silver mirror 	Y/N	Y/N	Y/N
 orange acidified dichromate solution turns green 	Y/N	Y/N	Y/N
Many flavour and aroma molecules are aldehydes.	Y/N	y/N	Y/N
Oxygen from the air causes the oxidation of food.	Y/N	Y/N	y/N
The oxidation of edible oils gives food a rancid flavour.	Y/N	Y/N	Y/N
Antioxidants:			
 are molecules that prevent unwanted oxidation reactions occurring 	Y/N	Y/N	Y/N
 are substances that are easily oxidised, and oxidise in place of the compounds they have been added to protect 	y/N	y/N	y/N
 can be identified as the substance being oxidised in a redox equation 	Y/N	Y/N	Y/N