Chemical changes and structure			
Periodicity			
· · · · ·	RP1	RP2	RP3
Elements are arranged in the periodic table in order of increasing atomic number .	y/N	y/N	Y/N
The periodic table allows chemists to make accurate predictions of physical properties and chemical behaviour for any element , based on its position .	У/N	Y/N	Y/N
Features of the table are:			
• groups: vertical columns within the table contain elements with similar chemical properties resulting from a common number of electrons in the outer shell	У/N	Y/N	Y/N
 periods: rows of elements arranged with increasing atomic number, demonstrating an increasing number of outer electrons and a move from metallic to non-metallic characteristics 	У/N	Y/N	Y/N
The first 20 elements in the periodic table are categorised according to bonding and structure :			
◆ metallic (Li, Be, Na, Mg, Al, K, Ca)	Y/N	Y/N	y/N
 ◆ covalent molecular — H₂, N₂, O₂, F₂, Cl₂, P₄, S₈ and fullerenes (eg C₆₀) 	y/N	Y/N	Y/N
 covalent network — B, C (diamond, graphite), Si 	Y/N	Y/N	Y/N
◆ monatomic (noble gases)	Y/N	y/N	y/N

The covalent radius is a measure of the size of an atom.	y/N	Y/N	Y/N
The trends in covalent radius across periods and down groups can be explained in terms of the number of occupied shells, and the nuclear charge.	y/N	Y/N	Y/N
The first ionisation energy is the energy required to remove one mole of electrons from one mole of gaseous atoms .	y/N	Y/N	Y/N
The second and subsequent ionisation energies refer to the energies required to remove further moles of electrons.	y/N	Y/N	Y/N
The trends in ionisation energies across periods and down groups can be explained in terms of the atomic size, nuclear charge and the screening effect due to inner shell electrons.	У/N	Y/N	Y/N
Atoms of different elements have different attractions for bonding electrons.	y/N	Y/N	Y/N
Electronegativity is a measure of the attraction an atom involved in a bond has for the electrons of the bond .	y/N	Y/N	Y/N
The trends in electronegativity across periods and down groups can be rationalised in terms of covalent radius, nuclear charge and the screening effect due to inner shell electrons.	y/N	Y/N	Y/N

Chemical changes and structure			
Structure and bonding			
(i) Types of chemical bond			
	RP1	RP2	RP3
In a covalent bond, atoms share pairs of electrons .	y/N	Y/N	Y/N
The covalent bond is a result of two positive nuclei being held	y/N	y/N	y/N
electrons.			
Polar covalent bonds are formed when the attraction of the atoms for the pair of bonding electrons is different .	y/N	y/N	Y/N
Delta positive (δ +) and delta negative (δ -) notation can be used to indicate the partial charges on atoms, which give rise to a dipole .	y/N	y/N	y/N
Ionic formulae can be written giving the simplest ratio of each type of ion in the substance.	y/N		N/N
Ionic bonds are the electrostatic attraction between positive and			771N
Tonic compounds form lattice structures of oppositely charged	y/N	y/N	Y/N
ions.	Y/N	Y/N	Y/N
Pure covalent bonding and ionic bonding can be considered as	y/N		
lying between these two extremes.		Y/N	Y/N
The difference in electronegativities between bonded atoms	y/N		
gives an indication of the ionic character.		Y/N	Y/N
The larger the difference, the more polar the bond will be.	y/N	y/N	y/N

If the difference is large , then the movement of bonding,			
electrons from the element of lower electronegativity to the	Y/N	Y/N	Y/N
element of higher electronegativity is complete, resulting in the			
formation of ions.			
Compounds formed between metals and non-metals are often but			
not always ionic	Y/N	Y/N	Y/N
nor diwdys, ionic.			
Dhydical properties of a compound such as its state at noom			
Physical properties of a compound, such as its state at room			
temperature, meiting point, boiling point, solubility, electrical	Y/N	Y/N	Y/N
conductivity, should be used to deduce the type of bonding and			
structure in the compound.			

Chemical changes and structure			
Structure and bonding			
(ii) Intermolecular forces			
	RP1	RP2	RP3
All molecular elements and compounds and monatomic elements			
condense and freeze at sufficiently low temperatures. For this to	Y/N	Y/N	Y/N
or discrete atoms.			
Intermolecular forces acting between molecules are known as van	y/N	Y/N	Y/N
der Waals forces.			
There are several different types of these, such as London ,			
dispersion forces and permanent dipole-permanent dipole	Y/N	Y/N	Y/N
interactions that include hydrogen bonding.			
London dispersion forces are forces of attraction that can			
operate between all atoms and molecules.	y/N	Y/N	Y/N
These forces are much weaker than all other types of bonding .	y/N	Y/N	Y/N
They are formed as a result of electrostatic attraction between temporary dipoles and induced dipoles caused by movement of	y/N	Y/N	Y/N
electrons in atoms and molecules.			
The strength of London dispension formed is related to the			
number of electrons within an atom or molecule.	y/N	Y/N	Y/N
A molecule is described as polar if it has a permanent dipole.	Y/N	Y/N	Y/N
The spatial arrangement of polar covalent bonds can result in a			
molecule being polar.	y/N	y/N	Y/N
	I	I	

Permanent dipole-permanent dipole interactions are additional			
electrostatic forces of attraction between polar molecules.		//18	//18
Permanent dipole-permanent dipole interactions are stronger	y/N	y/N	Y/N
of electrons.			
Bonds consisting of a hydrogen atom bonded to an atom of a strongly electronegative element such as fluorine oxygen or	y/N	Y/N	Y/N
nitrogen are highly polar.			
Hydrogen bonds are electrostatic forces of attraction between molecules that contain these highly polar bonds.	y/N	y/N	Y/N
A hydrogen bond is stronger than other forms of permanent dipole-permanent dipole interaction but weaker than a covalent bond	Y/N	Y/N	Y/N
bond.			
Melting points, boiling points, and viscosity can all be rationalised in terms of the nature and strength of the intermolecular forces	y/N	Y/N	Y/N
in terms of the nature and strength of the intermolecular forces that exist between molecules.			
By considering the polarity and number of electrons present in			
molecules, it is possible to make qualitative predictions of the strength of the intermolecular forces.	Y/N	Y/N	Y/N
The melting and boiling points of polar substances are higher than			
the melting and boiling points of non-polar substances with similar numbers of electrons.	y/N	y/N	y/N
Boiling points melting points viscosity and solubility/miscibility.			
in water are properties of substances that are affected by hydrogen bonding.	Y/N	Y/N	Y/N
The enemalous bailing points of emmenia water and budgesers			
fluoride are a result of hydrogen bonding.	y/N	Y/N	Y/N

y/N	y/N	y/N
y/N	y/N	y/N
y/N	y/N	y/N
y/N	y/N	y/N
y/N	y/N	y/N
	У/N У/N У/N У/N	у/N У/N у/N У/N

Chemical changes and structure			
Oxidising and Reducing agents			
	RP1	RP2	RP3
Reduction is a gain of electrons by a reactant in any reaction.	y/N	y/N	y/N
Oxidation is a loss of electrons by a reactant in any reaction.	Y/N	y/N	y/N
In a redox reaction, reduction and oxidation take place at the same time .	y/N	Y/N	Y/N
An oxidising agent is a substance that accepts electrons.	Y/N	y/N	y/N
A reducing agent is a substance that donates electrons.	Y/N	y/N	y/N
Oxidising and reducing agents can be identified in redox reactions.	У/N	y/N	Y/N
Elements with low electronegativities tend to form ions by losing electrons and so act as reducing agents.	У/N	y/N	Y/N
Elements with high electronegativities tend to form ions by gaining electrons and so act as oxidising agents.	У/N	y/N	Y/N
In the periodic table , the strongest reducing agents are in Group 1, and the strongest oxidising agents are in Group 7 .	У/N	y/N	Y/N
The electrochemical series represents a series of reduction reactions .	Y/N	y/N	y/N
The strongest oxidising agents are at the bottom of the left- hand column of the electrochemical series .	У/N	Y/N	Y/N
The strongest reducing agents are at the top of the right-hand column of the electrochemical series .	y/N	Y/N	Y/N

	RP1	RP2	RP3
An ion-electron equation can be balanced by adding the	y/N	y/N	y/N
electrons.			
Ion-electron equations can be combined to produce redox equations .	y/N	y/N	Y/N
Compounds, group ions and molecules can act as oxidising or reducing agents:			
hydrogen peroxide is a molecule that is an oxidising agent	Y/N	Y/N	Y/N
 dichromate and permanganate ions are group ions that are strong oxidising agents in acidic solutions 			
shong oxidising agents in delate solutions	Y/N	Y/N	Y/N
 carbon monoxide is a gas that can be used as a reducing 	Y/N		
agent		Y/N	Y/N
Oxidising agents are widely used because of the effectiveness			
with which they can kill tung a dacteria and inactivate viruses.	Y/N	Y/N	Y/N
The oxidation process is also an effective means of breaking down coloured compounds making oxidising agents ideal for use			
as dieacn for ciotnes à nair.	Y/N	Y/N	Y/N