
Higher Human Biology [2018IM]

Name

Unit 1 - Human Cells

Learning Outcome Checklists and Glossaries

	by the end of the lesson(s) I should know
	□ Somatic cells are any cell in the body other than cells involved in reproduction
Division in Somatic and Germline	□Germline cells are gametes (sperm and ova) and the stem cells that divide to
	form gametes
	□ Somatic stem cells divide by mitosis to form more somatic cells.
	□Germline stem cells divide by mitosis to produce more germline stem cells
	□Germline stem cells divide by meiosis to produce haploid gametes
	□Mitosis maintains the diploid chromosome number of 23 pairs of homologous
	chromosomes
ion)	\Box In meiosis the nucleus divides twice. 1 st division separates the homologous
vis	chromosomes. 2 nd division separates the chromatids.
Di	Meiosis creates haploid gametes containing 23 single chromosomes
	\Box The nucleus of germline cells have 23 pairs of chromosomes and are said to be
	diploid.
	\Box Cellular differentiation is the process by which a cell expresses certain genes to
No	produce proteins characteristic for that type of cell.
atic	Differentiation allows a cell to carry out specialised functions
nti	Embryonic stem cells are in the very early embryo
rei	□ All the genes in embryonic stem cells can be switched on, so these cells can
ffe	differentiate into any cell type and so are pluripotent
Cellular Differentiation	□ Tissue stem cells are involved in growth, repair and renewal of the cells found in
ar	that tissue.
IIul	□ Tissue stem cells can differentiate into all the types of cell found in a particular
Ce	tissue type and so are multipotent
	□Blood stem cells in the bone marrow are an example of tissue stem cells, they can differentiate into red blood cells, platelets, phasocytes, and lymphocytes
	differentiate into red blood cells, platelets, phagocytes and lymphocytes Stem cells can be used therapeutically for the repair of damaged or diseased
ų	organs or tissues
arc	Therapeutic uses of stem cells include corneal repair and regeneration of
Rese cells	damaged skin
Re	I I STAM CALL PARAARCH DROVIAAR INTORMATION ON NOW CALL DROCARERAE SUCH AR CALL
and Stem	growth, differentiation and gene regulation work.
c a St	□ Stem cells can also be used as model cells to study how diseases develop or for
uti of	drug testing.
ape use	
Therapeutic and Research use of Stem cells	Embryonic stem cells can be used to treat disease of injury
	□Using Embryonic stem cells involves destroying embryos and so causes ethical
	issues
٩	\Box Cancer cells divide excessively to produce a mass of abnormal cells (a tumour)
Cancer cells	that do not respond to regulatory signals and may fail to attach to each other.
	\square If the cancer cells fail to attach to each other they can spread through the
	body to form secondary tumours.

	by the end of the lesson(s) I should know
DNA structure	DNA is a long double stranded molecule
	the two strands of DNA are twisted in to a double helix
	the sub units of DNA are nucleotides
	🗆 each nucleotide contains deoxyribose sugar, phosphate & base.
	DNA has a 3'-5' sugar-phosphate backbone, where the phosphate
	joined to carbon 5' on one nucleotide is joined to the carbon 3' of the
	next nucleotide
	there are four different bases - (A) adenine, (T) thymine, (G)
A	guanine and (C) cytosine. The base sequence of DNA forms the
	genetic code
	complementary base pairing means A and T pair & C and G pair
	two DNA strands are held together by hydrogen bonds between
	the bases
	the two DNA strands run in opposite directions = antiparallel
	Replication of DNA occurs before cell division (mitosis & meiosis)
	to make identical copies of the chromosomes
	an enzyme called DNA polymerase adds complementary DNA
۔ ۲	nucleotides to the deoxyribose (3') end of a DNA strand.
IO.	DNA polymerase requires a primer to start replication
NA replication	\square primers are short complimentary sequences of DNA that allow the
pli	binding of DNA polymerase
2	DNA is unwound and the hydrogen bonds between bases are broken
A	to form two template strands.
Z	\square the 3'-5' strand is called the lead strand and is replicated
	continuously from the 3' end to the 5' end
	\square the 5'-3' strand is called the lagging strand and is replicated in
	fragments which are joined together by the enzyme ligase
	ATP is required to provide the energy for replication
	Polymerase Chain Reaction is a process which amplifies DNA
	Primers are short strands of DNA and are used in PCR to target
	base sequences at both ends of the region of DNA to be amplified
	PCR involves repeated cycles of heating and cooling
PCR	Heating the DNA to 92-98oC to separate the two strands of DNA
	Separated strands are then cooled to 50-60oC to allow primers to
	bind to target sequences
	It is then heated to 70-80oC and heat tolerant DNA polymerase
	replicate the region of DNA
	PCR can be used to amplify DNA to- help solve crime, settle
	paternity suits, diagnose genetic disorders

HHB Unit 1.3 GENE EXPRESSION

LOs

	by the end of the lesson(s) I should know
	Gene expression involves the transcription and translation of DNA sequences
gene expression	only a fraction of the genes in a cell are expressed
	gene expression involves three kinds of ribonucleic acid - RNA.
	RNA is single stranded and is composed of nucleotides containing ribose sugar,
	phosphate and one of four bases : cytosine, guanine, adenine and uracil.
	messenger RNA (mRNA) carries a copy of the DNA code from the nucleus to
	the ribosome, it is transcribed from DNA in the nucleus and translated into
	proteins by ribosomes in the cytoplasm
	each triplet of bases on the mRNA molecule is called a codon and codes for a
	specific amino acid
	ribosomal RNA (rRNA) and proteins form the ribosome.
	transfer RNA (tRNA) folds due to complementary base pairing and carries a
	specific amino acid to the ribosome
	a tRNA molecule has an anti-codon, an exposed triplet of bases, at one end and
	a site for amino acid attachment at the other end
	in transcription, DNA is transcribed to into primary mRNA transcripts in the
	nucleus
	RNA polymerase unwinds the double helix, breaks the hydrogen bonds between
L	the bases and aligns RNA nucleotides by complementary base pairing (C-G& A-U/T-A)
otio	the primary transcript includes introns (non-coding DNA sequence) and exons
Transcription	(coding DNA sequence)
ans	during RNA splicing the introns of the primary transcript of mRNA are removed
Tr	and the exons are joined together to form mature transcript.
	alternative RNA splicing allows different mature transcripts to be formed
	Different proteins can be expressed from one gene because of alternative RNA
	splicing
Translation	in translation, the mRNA code is turned into a polypeptide by tRNA at the
	ribosome.
	Translation begins at a start codon and ends at a stop codon
	Anticodons bond to codons by complementary base pairing, translating the
rai	genetic code into the correct sequence of amino acids.
	adjacent amino acids are joined by a peptide bond to form a polypeptide
	tRNA exits from the ribosome to collect more amino acids.
	an organism's phenotype is determined by the proteins produced as the result
Protein	of gene expression
	environmental factors also affect phenotype
	amino acids are linked by peptide bonds to form polypeptides
	polypeptide chains fold to form the three-dimensional shape of a protein, held
	together by hydrogen bonds and other interactions between individual amino acids
	proteins have a large variety of shapes which determines their functions

	by the end of the loccon(c) T chould know
	by the end of the lesson(s) I should know
mutations	mutations are random changes in genetic information
tat	mutations can alter genes or chromosomes
nu	mutations result in no protein or a faulty protein being expressed.
single gene mutations	Single gene mutations involve the alteration of a DNA nucleotide sequence single gene mutations include the substitution, insertion or deletion of nucleotides. single-nucleotide substitutions include: missense, nonsense and splice-site mutations missense mutations result in one amino acid being changed for another missense mutations may result in a non-functional protein or have little effect on the protein nonsense mutations results in a premature stop codon being produced nonsense mutations result in the production of a shorter protein splice site mutations change the bases at the point where intron and exon meet splice site mutations result in some introns being retained and/or some exons being removed insertions or deletions result in frame-shift mutations frame shift mutations cause all the amino acids after mutation to be affected, causing a major effect on structure of the protein produced deletion - a section of a chromosome is removed
chromosome mutations	duplication - a section of a chromosome is removed duplication - a section of a chromosome is added from its homologous (matching) chromosome inversion - a section of chromosome is reversed
าอา	translocation – a section of a chromosome is added to a
nos	chromosome that is not its homologous partner (ie not its matching
ouc	chromosome)
hrc	•
	the substantial changes in chromosome mutations often make them
	lethal.

HHB Unit 1.5 HUMAN GENOMICS LOS

011111.0	NOMAN BENOMICS LOS
Lesson(s)	by the end of the lesson(s) I should know
Genome	the genome of an organism is its entire hereditary information encoded in DNA a genome is made up of genes that code for proteins and other
Personalised medicine	An individual's genome can be analysed to predict the likelihood of

Lesson(s)	by the end of the lesson(s) I should know
Types of metabolic pathways	Metabolic pathways are integrated and controlled pathways of enzyme- catalysed reactions within a cell Metabolic pathways can involve anabolic reactions or catabolic reactions Anabolic reactions build up small molecules into large molecules and require energy Catabolic reactions breakdown large molecules into smaller molecules and release energy metabolic pathways can have reversible and irreversible steps and alternative routes.
Enzymes	metabolic pathways are controlled by the presence or absence of particular enzymes metabolic pathways are controlled by the regulation of the rate of reaction of key enzymes substrate molecules have an affinity for the active site of an enzyme the enzyme is flexible, and the substrate can induce the active site to change shape by induced fit to fit the substrate better the active site can orientate the substrate molecules so that they fit more closely Activation energy is the energy required to initiate a chemical reaction. Enzymes lower the activation energy. products of reactions have a low affinity for the active site and are released some metabolic reactions are reversible, the concentrations of substrate and end product concentration affect the direction and rate of an enzyme reaction
Control of metabolic pathways	competitive inhibitors are molecules that resemble the substrate and compete with it for the active site of the enzyme competitive inhibition can be reversed by increasing substrate concentration non-competitive inhibitors are molecules that bind to the enzyme away from the active site but change the shape of the active site preventing the substrate from binding non-competitive inhibition cannot be reversed by increasing substrate concentration feedback inhibition occurs when the end-product in the metabolic pathway reaches a critical concentration in feedback inhibition the end-product inhibits an earlier enzyme blocking the pathway and preventing further synthesis of the end-product.

	by the end of the lesson(s) I should know
glycolysis	cellular respiration is the release of energy from food molecules in cells glycolysis is the breakdown of glucose to pyruvate in the cytoplasm ATP is required for the phosphorylation of glucose and intermediates during the energy investment phase of glycolysis More ATP is generated in the energy pay-off phase, leading to a net gain of ATP Dehydrogenase enzymes remove hydrogen ions and electrons and pass them to the coenzyme NAD, forming NADH In aerobic conditions (when oxygen is present) pyruvate is broken down to an acetyl group. The acetyl group combines with coenzyme A to form acetyl coenzyme A
citric acid cycle	the citric acid cycle happens in the matrix of the mitochondria the acetyl group from acetyl coenzyme A combines with oxaloacetate to form citrate during a series of enzyme-controlled steps, citrate is gradually converted back into oxaloacetate ATP is generated carbon dioxide is released Dehydrogenase enzymes remove hydrogen ions and electrons and pass them to the coenzyme NAD, forming NADH
electron transport chain	The electron transport chain is a series of carrier proteins attached to the inner membrane of the mitochondria Hydrogen ions and electrons are passed to the electron transport chain by from NADH the electrons are passed along the electron transport chain releasing energy this energy is used to pump hydrogen ions across the inner mitochondrial membrane return flow of hydrogen ions, through the ATP synthase protein on the inner mitochondrial membrane, synthesises ATP most ATP is generated from the electron transport chain the final acceptor is oxygen, which combines with hydrogen ions and electrons to from water
ATP	ATP is used to transfer energy to cellular processes which require energy cellular processes which require energy include DNA replication, protein synthesis, muscle contraction

	by the end of the lesson(s) I should know
lactate metabolism	by the end of the lesson(s) I should know during vigorous exercise the muscle cells do not get enough oxygen to support the electron transport chain in oxygen-deficient conditions pyruvate from glycolysis is converted to lactate hydrogen from the NADH formed during glycolysis is transferred to the pyruvate to produce lactate this regenerates NAD needed to maintain ATP production through glycolysis lactate accumulates in muscle cells when oxygen is in short supply during strenuous exercise lactate build-up in muscle cells can cause muscle fatigue & oxygen debt oxygen debt is repaid in a recovery period following strenuous exercise during the recovery time lactate is converted back into pyruvate and glucose in the liver
skeletal muscle fibres	 skeletal muscle contracts to bring about the movements of the body skeletal muscle has slow-twitch fibres and fast-twitch fibres slow-twitch fibres contract more slowly but can sustain contractions for longer slow twitch muscle fibres are useful for endurance activities e.g. long-distance running, cycling, cross country skiing rely on aerobic respiration to generate ATP have many mitochondria have a large blood supply have high concentration of oxygen storing protein called myoglobin mainly store fuel as fat fast-twitch fibres contract more quickly over short periods and are effective for short bursts of strenuous activity e.g. sprinting, weight lifting fast twitch muscle fibres can generate ATP through glycolysis only have a lower blood supply mainly store fuel as glycogen most human muscle tissue contains a mixture of slow & fast twitch fibres athletes show distinct patterns of muscle fibres that reflect their sporting activity