How does the volume of air in a balloon affect the distance it travels?

Materials

- Rubber Balloons
- Binder clip
- String or Thin Rope
- Straws
- Tape
- Cloth Tape Measure
- Two Posts (At least three feet tall and fifteen feet apart)
- Paper
- Pencil
- Graph paper
- Helper

Method

Tie the string or rope to one of the posts at the height of at least three feet. Leave the other end loose.

Cut some straws into lengths that will fit on your balloon. One third of a straw is usually a good length.

Inflate a balloon and seal the air inside by folding the neck over once and clamping it shut with a binder clip.

Measure and record your balloon's circumference by wrapping your tape measure around the balloon's widest point. You might need your helper to lend a hand.
Keeping the balloon's opening shut, tape a straw to your inflated balloon. Make sure
the straw and the nozzle of the balloon are parallel to each other.
Thread the loose end of your string through the straw so that the neck of the balloon is facing towards you.

Pull your string taut and line it up with your second post. Measure a point off the ground
that's the same height as the knot holding the other end of the string to the first post. Be trial Why do me think ans height whenever you're conducting a balloon launching

Count down to zero and let the rocket fly! Have your helper use the tape measure to measure and record the point on the string at which the balloon stopped.

Repeat steps 5-8 with two more balloons inflated to the same circumference as your first
balloon. Average the distance travelled for all three trials.
Repeat steps 5-10 with three balloons inflated to a circumference 5 cm greater than your first balloons were.
Keep conducting trials using balloons inflated to progressively bigger circumferences.
Using a sheet of graph paper, plot your trials on a line graph. The x axis should be circumference in centimetres. The y axis should be distance travelled in feet.

Look at your graph. What is it telling you?

