Number Talks @ Alloway Primary: A Parent Guide

Primary 4-7

What is a Number Talk?

A number talk is a daily class discussion based on one or more calculations. The teacher will present the problem (e.g. $114+75$) followed by pupils sharing, not only the answer, but the strategy they used to achieve this answer. Hand signals allow children to show when they are thinking, have an answer and a strategy and have more than one strategy. Some Number Talk sessions will focus on a particular strategy, providing opportunities to look at how we can solve problems efficiently.

What is the ultimate goal of a number talk?

At Alloway Primary, our aim is for all pupils to be assertive when talking about number. Children who can talk through the strategies they use will develop flexibility, accuracy and efficiency in their mathematical thinking.

Number Talk Stems

My solution is.
The strategy I used was
lagree with because
How did you decide to ?
I saw it a different way because
My strategy is different because
My strategy is similar because
I don't understand your solution/strategy. Can you please explain it again?

Why number talks?

Encouraging pupils to share their thinking not only develops a confident individual, it opens a door of opportunity to see things differently and in a way that better suits the needs of individual learners. Sharing different strategies also encourages problem solving; a skill required in many areas of life.

How can I support my child with Number Talks?

You can support your child by exploring the strategies they are using in class. The strategies used are attached on the following pages of this handbook. Please note, that multiplication and division strategies are not formally taught until P5. Until then we focus on repeated addition and subtraction as well as times table facts. However, some children may discover strategies before this, a fundamentally important aspect of Number Talks.

We are currently adding video clips of each strategy to our web-page. Please check here for further guidance.

What if my child doesn't like a particular strategy? The whole point of Number Talks is to encourage pupils to explore strategies that work for them. They will be taught to expect that not all strategies work for them. As long as they can tackle any given problem using a chosen strategy that works for them, they will continue to build number sense.

Addition

Adding Up in Chunks/ Counting On	Reordering
	$\begin{aligned} & 25+26+75 \\ & 100+26=126 \end{aligned}$
Place Value - Partitioning $\begin{gathered} 116+127 \\ 100+100=200 \\ 10+20=30 \\ 6+7=13 \\ 200+30+13=243 \end{gathered}$	Making Tens/Bridging Through 10 $\begin{aligned} & \frac{49+38}{1} \\ & 50+37=87 \end{aligned}$
Compensation $\begin{gathered} 67+28 \\ +2 \\ / \\ 67+30=97 \\ 97-2=95 \end{gathered}$	Doubles/Near Doubles $\begin{gathered} 16+17 \\ 16+16=32 \\ 32+1=33 \end{gathered}$
Friendly Numbers $\begin{gathered} 28+47 \\ +2-2 \\ 30+45=75 \end{gathered}$	Bridging Through 60 How many minutes is it to the next hour?

Removal or Counting Back $\begin{gathered} 123-69 \\ 123-(20+40+3+6) \\ 123-20=103 \\ 103-40=63 \\ 63-3=60 \\ 60-6=54 \end{gathered}$	Reordering $L_{20-6=14}^{25-6-5}$
Place Value - Partitioning $\begin{gathered} 367-154 \\ 367-100=267 \\ 267-50=217 \\ 217-4=213 \\ 367-100-50-4=213 \end{gathered}$	Adding Up/Bridging Through 10 $\begin{gathered} 23-16 \\ 16+4=20 \\ 20+3=23 \end{gathered}$
Place Value $\begin{gathered} 399-254 \\ (300+90+9)-(200+50+9) \\ 300-200=100 \\ 90-50=40 \\ 9-4=5 \\ 100+40+5=145 \end{gathered}$	Place Value (with negative numbers) $\begin{gathered} 324-247 \\ (300+20+4)-(200+40+7) \\ 300-200=100 \\ 20-40=-20 \\ 4-7=-3 \\ 100-20-3=77 \end{gathered}$
Adjusting for Easier Numbers $\begin{gathered} 123-59 \\ +1 \\ 123-60=63 \\ 63+1=64 \end{gathered}$	Keep a Constant Difference $\begin{gathered} 151-98 \\ (151+2)-(98+2) \\ 153-100=53 \\ 151-98=53 \end{gathered}$

Friendly Numbers $\begin{gathered} 9 \times 15 \\ 10 \times 15=150 \\ 150-15=135 \end{gathered}$ Don't forget to 'undo' your change!	Repeated Addition
Partial Products $\begin{gathered} 6 \times 125 \\ 6 \times(100+20+5) \\ (6 \times 100)+(6 \times 20)+(6 \times 5) \\ 600+120+30=750 \end{gathered}$	Doubling and Halving $\begin{gathered} 24 \times 8 \\ \times 2 \quad \div 2 \\ 48 \times 4 \\ \times 2 \quad \div 2 \\ 96 \times 2 \\ \times 2 \quad \div 2 \\ 192 \end{gathered}$
Breaking Factors into Smaller Factors $\begin{aligned} & \bigwedge_{2 \times 6}^{12} \times 25 \\ & 2 \times 25=50 \\ & 50 \times 6=300 \end{aligned}$	Grid Method$35 \times 7$$X$ 30 5 7 210 35$210+35=245$

Repeated Subtraction $\begin{gathered} 24 \div 6 \\ 24-6-6-6-6 \\ 1 x-2 x-3 x \end{gathered}$ We are able to subtract 4 lots of 6 therefore: $24 \div 6=\underline{4}$	Proportional Reasoning Making each number either side of the division sign in the problem smaller by dividing it by the same number. $\begin{aligned} & 384 \div 16 \\ = & (384 \div 2) \div(16 \div 2) \\ = & (192 \div 2) \div(8 \div 2) \\ = & (96 \div 2) \div(4 \div 2) \\ = & 48 \div 2=24 \end{aligned}$
Partial Quotients $\begin{aligned} & (300 \div 3)+(120 \div 3) \\ & 3 \underbrace{\underbrace{140}_{100+40=}}_{\substack{300 \quad 120}} \end{aligned}$	Multiplying Up $72 \div 8$ Think: How many times does 8 need to be multiplied to reach the target number? $\left.\begin{array}{l} 8 \times \underline{5}=40 \\ 8 \times \underline{4}=32 \end{array}\right\} 40+32=72$

