0
 Renfrewshire
 Council

Progression and Support Document Second Level - Pathway 3

Rationale

This series of Progression and Support documents, including Pathways and Bundling Advice provides a progression of skills through a level. Regular reinforcement of concepts and promotion of Numeracy Across Learning is encouraged. The Pathways are not intended to be prescriptive or restrictive. Practitioners should identify when opportunities occur within contexts across the curriculum and plan for this to demonstrate relevance. The overall aim is to provide a shared standard of expectations and to ensure progression and depth within planning.

The Progression and Support documents focus on the skills required to achieve concepts within an outcome and detail the mental agility strategies associated with the learning within each experience and outcome. Suggestions for formative assessment and summative assessment are provided and some possible resources are listed, but this list is by no means exhaustive.

It is hoped that these Progression and Support documents provide a clear framework and the necessary support so that practitioners can feel confident in planning engaging, wellpaced and suitably challenging learning experiences, which involve a variety of methodologies. Ultimately our goal is to raise attainment for all our learners and these documents are just one part of that journey. All our learners should be given opportunities that will allow them to become confident and numerate, build their skills in a variety of contexts and allow them to reach their own targeted positive destinations.

Many of the documents consulted in the process of creating the Support and Progression documents can be found on the Education Scotland website. These include:

- Numeracy and Mathematics: Experiences and Outcomes
- Mathematics: Principles and Practice
- Numeracy Across Learning: Principles and Practice
- National Numeracy and Mathematics Progression Framework
- Numeracy and Mathematics Benchmarks
- CfE Statement for Practitioners

In addition to this, current planning documents that are being used across the authority, progression documents from other local authorities across Scotland and a variety of resources were consulted.

Renfrewshire Council Numeracy and Mathematics Progression and Support - Second Level Pathway 3
 Bundling Advice

There are many possible ways to bundle Numeracy and Mathematics Experiences and Outcomes depending on the skills that are being explored and the contexts for learning that are relevant to the children that the learning is being planned for.

The following is one example of how to bundle the Experiences and Outcomes according to the skills in this pathway. Choosing bundles of outcomes based on relevant contexts for learning is always the best practice and should be explored whenever possible. It can also be appropriate to bundle Numeracy and Mathematics across curricular areas if there is a clear opportunity to do so. There is exemplification of one of these bundles for further clarification and to demonstrate the learning opportunities that link these particular Experiences and Outcomes as a bundle in this instance.

These bundles can be approached in whichever order is most appropriate. Some of the Experiences and Outcomes have not been bundled as links between outcomes were too tenuous. Bundling without clear and strong links is not beneficial and it may be the case that some Experiences and Outcomes are better taught discretely.

There should be an element of number work/manipulating number every day, regardless of any other Numeracy and Mathematics learning that is planned for. This will provide regular opportunities to reinforce and challenge learning across the key numeracy outcomes which are indicated in bold below. At the beginning of a new pathway, the regular number work/manipulation of number will be based on reinforcement of the skills from the previous pathway. As the learning progresses, introduction of learning to develop the new skills within the current pathway should be introduced and progressed.

Bundling of Experiences and Outcomes Second Level Pathway 2	Opportunities across the curriculum
Estimation and rounding MNU 2-01a Number and number processes MNU 2-03a Money MNU 2- 09a, MNU 2-09b \& MNU 2-09c	
Number and number processes MNU 2-02a Number and number processes MNU 2-04a	
Multiples, factors \& primes MTH 2-05a Mathematics - its impact on the world, past, present \& future MTH 2-12a Patterns \& relationships MTH 2-13a	
Number and number processes MTH 2-03c Expression and equations MTH 2-15a	
Properties of 2D shapes \& 3D objects MTH 2-16a Properties of 2D shapes \& 3D objects MTH 2-16b	
Angle, symmetry \& transformation MTH 2-17a	
Angle, symmetry \& transformation MTH 2-17b	
Angle, symmetry and transformation MTH 2-19a	
 capacity)	
Time MNU 2-10c	
Properties of 2D shapes \& and 3D objects MTH 2-16c	
Angle, symmetry and transformation MTH 2-17d	
Measurement MNU 2-11c	
Number and number processes MNU 2-03b	
Fractions, decimal fractions and percentages MNU 2-07a, MNU 2-07b \&	
MTH 2-07c	
Time MNU 2 -10a \& MNU 2-10b	
Data \& analysis MNU 2-20a, MNU 2-20b \& MTH 2-21a	
Ideas of chance and uncertainty MNU 2-22a	

Renfrewshire Council
 Numeracy and Mathematics Progression and Support - Second Level Pathway 3

As stated above, this is only one possible way to bundle the Experiences and Outcomes for this pathway. Different contexts for learning across the curriculum will raise opportunities to bundle in different ways. Consideration should be given to bundling in relevant contexts and to using opportunities across the curriculum to reinforce Numeracy and Mathematics skills.

Bundling within Numeracy and Mathematics

The following explains why these experiences and outcomes bundle sensibly.

Bundle	Reasons bundle was chosen		
Number and number processes MNU 2-03b	Understanding hundredths and their place in the number system is central to understanding and converting between decimal fractions, fractions and, especially, percentages. Therefore, it seems sensible to bundle these outcomes together.		
2-07a, MNU 2-07b \& MTH 2-07c		\quad	As stated previously, there are numerous ways to bundle the experiences
:---			
and outcomes, this is only one way. If there is a particular context being			
explored in class, i.e. social studies, science etc., it may be sensible to			
bundle differently.			

Bundling Across the Curriculum

The following is an example of bundling experiences and outcomes from across the curriculum, within a context.

Bundle and Context for Learning	Reasons bundle was chosen
Context is class novel of 'Tribes' by Catherine MacPhail	Plan a trip to the Isle of Mull just as the Tribe do in the story. Use the transport timetables, café menus and activity pricelists to work to a budget and get the best value for money. This activity could incorporate MNU 2-03a, MNU 2-07a/b, MNU 2-09a, MNU 2-10a/b/c depending on
As I listen or watch, I can identify and discuss the purpose, main ideas and supporting detail contained within the text, and use this information for different purposes. LIT 2-04a	the level of complexity of the offers available on the pricelists and the information provided on the timetables.
I can show my understanding of what I listen to or watch by responding to literal, inferential, evaluative and other types of questions, and by asking different kinds of questions of my own. LIT 2-07a	Explore measure and scale by creating a scaled model of the old whisky factory and derelict shops. MNU 2-11a/b, MTH 2-16a/b, MTH 2-17d. Skills within MNU 2-03a may also utilised.
I can select and use a range of strategies and resources before I read, and as I read, to make meaning clear and give reasons for my selection. LIT 2-13a	These are fexamples of how to plan for Numeracy and Mathematics across the curriculum by bundling relevant outcomes. As you can see, many of the discussion points would have taken place anyway. Considering the above experiences and outcomes together, extends the learning and utilises Numeracy and Mathematics in a meaningful way.

Second Level Progression and Support Pathway Three

Number and
Number
Processes
MNU 2-02a

Measurement MNU 2-11a MNU 2-11b Length	Data \& Analysis MNU 2-20b	Numbers and Number Processes MTH 2-03c	Multiples, factors \& primes MTH 2-05a	Fractions, decimal fractions \& percentages MTH 2-07c	Money MNU 2-09a	Measurement MNU 2-11a MNU 2-11b Weight	Data \& Analysis MTH 2-21a	Data \& Analysis MNU 2-20a
	Angle, symmetry \& transformation MTH 2-17d	Measurement MNU 2-11c	Time MNU 2-10c	Time MNU 2-10b	Measurement MNU 2-11a MNU 2-11b Volume \& Capacity	Money MNU 2-09b	Properties of 2D shapes \& 3D objects MTH 2-16c	Fractions, decimal fractions \& percentages MNU 2-07b

Please note that MTH 2-17c and MTH 2-18a are omitted from this Pathway.

The above is an overview of the Experiences and Outcomes contained in Second Level Pathway 3. It is best practice to bundle together Es \& Os for teaching and learning. This can happen within the curricular area of Numeracy and Mathematics or Numeracy and Mathematics Es \& Os can be bundled with other curricular Es \& Os. Some Es \& Os may be taught in isolation if bundling is not appropriate with the particular contexts for learning that are being explored as tenuously bundled Es \& Os are not advised as relevance and depth of learning would be weak. Advice on bundling is included within this document.

The following annotation explains how the Progression and Support Documents can be

Topic \& CfE Outcome - Estimating and Rounding

I can use my knowledge of rounding to routinely estimate the answer to a problem then, after calculating, decide if my answer is reasonable, sharing my solution with others. MNU 2-01a

Benchmarks

- Rounds whole numbers to the nearest 1000, 10000 and 100000.
- Rounds decimal fractions to the nearest whole number, to one decimal place and two decimal places.
- Applies knowledge of rounding to give an estimate to a calculation appropriate to the context.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Practise rounding to 1000, 10000 and 100000 using reallife contexts Sums and differences of pairs of multiples of 10 , 100 and 1000 Numbers that can be added to any four digit number to make the next multiple of 1000 , i.e. $4087+?=5000$ Skills (mentally, with jottings and materials if needed) Use rounding to estimate an answer to a calculation Partition - add or subtract a multiple of 10,100 or 1000 and adjust e.g. $\begin{gathered} 46+29 \\ =46+30-1 \end{gathered}$ or $\begin{gathered} 86-38 \\ =86-40+2 \end{gathered}$	I can round decimal fractions to the nearest whole number, to one decimal place and two decimal places - I can round decimal fractions to the nearest whole number to one decimal place and two decimal places by looking at the digits and can explain the rule I have used. e.g. - $23 \cdot 6$ rounds to 24 to a whole number - $176 \cdot 27$ rounds to 176.3 to one decimal place - $519 \cdot 528$ rounds to $519 \cdot 53$ to two decimal places - I can explain the importance of looking at particular digits in a number when I am deciding how to round - I can give examples of numbers which are rounded to the nearest whole number, one decimal place and two decimal places - I have estimated, by rounding in different ways, and can compare this with the exact answer, discussing the accuracy of my estimate - I can give examples of when the accuracy of an answer is important in everyday contexts	HAM Teaching Cards WN 2.15a, WN 2.15b TJ Level D Ch 3 Ex 3 pgs 39-40 TJ Level E Ch 2 Ex 3 pgs 30-31 TJ 2a Ch 5 Ex 3 Ex 4 pgs 44-47 TJ 2b Ch 1 Ex 3 pgs 7-8 H7 Teacher's Notes pgs 31-34 H7 Tbk pg 5	Write HAM Question Bank WN 2.15a, WN 2.15b Write TJ Assessment Pack MNU 2-01a Say and Do Use whiteboards or Maths Journals for working and answers. Ask the children to round two given numbers the nearest tenth or whole number. The children then add or subtract the rounded numbers to achieve a rounded total then use a strategy of their choice to complete an accurate calculation using the original numbers. Children then compare the rounded estimate with the accurate calculation and explain the strategies used.

Topic \& CfE Outcome - Number and Number Processes

I have extended the range of whole numbers I can work with and having explored how decimal fractions are constructed, can explain the link between a digit, its place and its value. MNU 2-02a

Benchmarks

- Reads, writes and orders whole numbers to 1000 000, starting from any number in the sequence.
- Explains the link between a digit, its place and its value for whole numbers to 1000000.
- Reads, writes and orders sets of decimal fractions to three decimal places.
- Explains the link between a digit, its place and its value for numbers to three decimal places.
- Partitions a wide range of whole numbers and decimal fractions to three decimal places, for example, $3 \cdot 6=3$ ones and 6 tenths $=36$ tenths.

Mental Strategies	Skills
Recall	Introduce thousandths as decimal notation
Count on or back in	- Order
hundreds, tens,	Read
ones, tenths,	- Write (digits and words)
hundredths and	Place Value
thousandths	- Partition
What must be	- I can round to two decimal places in a real life

I can use digits 0-9 in different combinations to show how numbers are constructed to $\mathbf{2}$ decimal places, using $\mathbf{0}$ as a place holder.

I can identify, extend \& predict number sequences involving numbers to $\mathbf{2}$ decimal places.

I can identify, extend and predict number sequences involving numbers to a million

- I know that a decimal fraction is a representation of part of a whole number
I can identify and write thousandths as fractions
- I can change any thousandths fraction to a decimal fraction
- I can explain the importance of zero as a placeholder
- I can identify the position of thousandths on a number line
- I can change any mixed number with hundredths or thousandths to a decimal
- I can talk about how decimal fractions are used in everyday life

Possible Resources	Assessment
HAM Teaching Cards	Write
FDP 2.9b, FDP 2.9c,	HAM Question Bank FDP 2.9b,
FDP 2.10, FDP 2.11	FDP 2.9c, FDP 2.10, FDP 2.11
TJ Level E Ch 2	Write
Ex 1 Qu 9-15 pg 27	TJ Assessment Pack MNU 2-02a
H7 Teacher's Notes pgs 78-83	Say C7 Tbll out a decimal. The child should respond with the matching number, i.e. 4.767 =
4 and 767 thousandths. Can be	
played as a team game two	

Do

Children are given a number that is to be rounded to one decimal place. i.e. $4 \cdot 36$ is given and the children are expected to respond with $4 \cdot 4$. This assessment technique could be used for rounding to two decimal places too.

Do

Ask children to write a true or false statement onto a whiteboard, e.g. two and seven hundredths is the same as $2 \cdot 7$; three and seventeen hundredths can be written as 3.17 ; the number 4.08 has 8 tenths. Children explain why they think each is true or false. If a statement is false, the child who wrote it should explain how the statement could be changed to make it true. They explain how to work it out if there are any mistakes.

Topic \& CfE Outcome - Numbers and Number Processes

Having determined which calculations are needed, I can solve problems involving whole numbers using a range of methods, sharing my approaches and solutions with others. MNU 2-03a

Benchmarks

- Adds and subtracts multiples of 10, 100 and 1000 to and from whole numbers and decimal fractions to two decimal places.
- Adds and subtracts whole numbers and decimal fractions to two decimal places, within the number range 0 to 1000000.

Mental Strategies	Skills
Recall Recall the sums and differences of pairs of multiples of 10, 100	Idd and Subtract digit numbers mentally

Recall the addition doubles of numbers from 1 to 100, e.g. $37+37$, and the corresponding halves

What must be added to any 3 digit number to make the next multiple of 100 , e.g. $631+$? $=700$

Skills

(mentally, with
jottings and materials if needed)

Add or subtract any pair of three digit numbers, including crossing the 10s and
100 boundary, e.g.
$247+358$ and
591-235
Add near doubles of three digit numbers, i.e. $128+127$

Add or subtract a near multiple of 100 to any two or three digit number, e.g.
$235+198=$
$235+200-2$

Add or subtract a near multiple of 10 with three digits to any two or three digit number,
e.g. $351+229=$

351+230-1

Possible Resources
Add and Subtract
HAM Teaching Cards
WN 2.14, WN 2.15a,
WN 2.15b, WN 2.15c
WN 2.16, WN 2.17
TJ Level E Ch 1
Ex 2 pgs $11-12$
H7 Teacher's Notes
pgs $26-31$

H7 Tbk pgs 1 - 4

Assessment
Write
HAM Question Bank WN 2.14,
WN 2.15a, WN 2.15b, WN
2.15c, WN 2.16, WN 2.17

Do

Write a calculation on the board involving a near multiple of 10, e.g. $87-39$. Children work out the answer and show it on a whiteboard.

Write

Write a calculation on the board. The children work out the answer, drawing a number line on their whiteboard to show their working, counting on or back.

Do

Children all write a 2 or 3 digit number on their whiteboard and write the complement to 100 and/or 1000 on the back. Ask children to volunteer to be the teacher and get them to come to the front of the class. Each child works out the complement to 100 or 1000 and shows it to the child a the front of the class to see f it matches with the answer the child has written on the opposite side of their board. If there are any mistakes, these can be used as positive learning opportunities.

Do

Call out a number, e.g. 42, which children write in the middle of their whiteboard. They draw an arrow to the left and write half and do the same on the other side for double. Children hold up their whiteboards to show answers, e.g. $21 \leftarrow 42 \rightarrow 84$. Vary the complexity of the number used to include a range from 1000 000 to thousandths

Write
 Write three vertical

partition numbers for
addition and
subtraction, i.e.
$244+127=$
$200+100+40+20+$
$7+4$
Chunking - Add or
subtract in chunks of
friendly numbers, i.e.
$660+43=$
$660+40+3$
An empty number
line can be used to
visualise this
Rounding and
adjusting - in addition
and subtraction
round one of the
numbers to the
nearest 10 (can round
to 100 too in some
circumstances) then
deal with the second
number. Remember
to adjust at the end,
i.e.
$340+18=$
$340+20-2$
Use knowledge of
place value and
related calculations,
e.g.
$130+150=280$
by using
$13+15=28$
Making Tens -
Use knowledge of
tens to help in
calculations, i.e.
$189+245$, take 1
from 245 and add to
189 to Make a Ten
makes,
$190+244=$
434

Topic \& CfE Outcome - Numbers and Number Processes

Having determined which calculations are needed, I can solve problems involving whole numbers using a range of methods, sharing my approaches and solutions with others. MNU 2-03a continued

Benchmarks

- Uses multiplication and division facts to the 10th multiplication table.
- Multiplies and divides whole numbers by multiples of 10, 100 and 1000.
- Multiplies whole numbers by two digit numbers.
- Divides whole numbers and decimal fractions to two decimal places, by a single digit, including answers expressed as decimal fractions, for example, $43 \div 5=8.6$.

Mental Strategies Recall

Recite and recall all multiplication facts and corresponding division facts

Skills

(mentally, with jottings or materials in needed)

Multiply pairs of two digit and single digit numbers, i.e. 28×3

Divide a two digit number by a single digit number, i.e. $98 \div 7$ (exploring partitioning method)

Divide by 25 or 50 by repeated halving

Multiply pairs of multiples of 10 and 100 , i.e. 600×20, 300×400

Divide multiples of 100 by a multiple of 10 or 100 (whole number answers),
i.e. $600 \div 20$,
$800 \div 400$
Scale up or down using known facts, i.e. given that three oranges cost 24p, find the cost of four oranges

Skills Multiply and Divide

- I can multiply and divide up to $\mathbf{1 0 0 0} \mathbf{0 0 0}$ by a single digit in written form
- I have explored multiplication of whole numbers by two digits using different methods, i.e. grid, array etc.
- I can use notation of remainders correctly

I have had opportunities to explore concrete materials and pictorial representations in relation to grouping and sharing, building the concepts of multiplying and dividing, i.e. arrays for multiplication

I have investigated vocabulary in order to determine which processes are needed to solve problems

- I understand that a number can be split in lots of different ways which help me to multiply (e.g. $32 \times 6=(30 \times 6)+(2 \times$ 6))
- I can use my knowledge of place value to partition a number
- I can use my knowledge of multiplication facts and multiplying by multiples of 10 to fill in the grid and calculate an answer
- I can use estimation to check whether my answer is sensible
- I understand that division can be done by repeated subtraction
- I can use my table facts to take away groups of a number to work out a division calculation knowing there may be some left over
- I can use my table facts to take away blocks of 10 from a number including remainders
- I know how to set out my working
- I can look at a calculation and decide if I need to use a written calculation or if I can use table facts to solve it
- I can use my table facts to take away groups of a multiple of 10 to work out a division calculation knowing there may be some left over
- If I need a written calculation, I can write it in the appropriate layout
- I understand that division can be thought of as sharing
- I can use base ten material to model sharing of 2- and 3digit numbers by 1-digit numbers
- I know how to record the formal algorithm using base ten material
- I can read a problem and work out what it means
- I can identify the calculations required to solve the problem, knowing when more than one calculation is required
- I can identify the most appropriate strategy for carrying out the calculation(s)
Possible Resources
Multiply and Divide
HAM Teaching Cards
WN 2.18a, WN 2.19a
WN 2.19b, WN 2.19c
WN 2.20a, WN 2.20b
WN 2.20c, WN 2.20d
WN 2.21
TJ Level E Ch 1
Ex 5
Ex 6
Ex 7
Ex 8
pgs $15-20$
H7 Teacher's Notes
pgs $41-43$

H7 Tbk pgs 11 - 12

Assessment
Write
HAM Question Bank WN 2.18a,
WN 2.19a, WN 2.19b, WN
2.19c, WN 2.20a, WN 2.20b,
WN 2.20c, WN 2.20d, WN 2.21

Write

TJ Assessment Pack
MNU 2-03a

Do

Write a calculation on the board involving a near multiple of 10 , e.g. 29×5. Children work out the answer and show it with their number fan.

Write and Do

On the board write several multiple choice answers, e.g. A less than 200, B 200-400, C 400-600, D more than 600 Write a calculation on the board. Ask children to estimate what the answer will be and to vote for one of the four options. Then they work with a partner to calculate the exact answer and see if their estimate was right.

Say, Write and Do

Write up a calculation on the board and split the class into three teams. Give each team a different strategy to use to complete the calculation, i.e. grid method, partitioning and combining, formal algorithm, calculator etc. Discuss the similarities and differences between each method and which method is most efficient.

Write

Roll a dice three times to create a 2 digit $\div 1$ digit calculation. Children use the chunking method to complete the calculation on their whiteboards Council

- I can record and explain my thinking so that it makes sense to somebody else
- I can explain my answer in relation to the original question and can check my solution makes sense
- I know there may be more than one solution to a problem and can identify a range of possible solutions

Do
Half of the children write a 3 digit number and the other half write a 1 digit number. Ask children to walk around the room until you call stop. If they have a 3 digit number, they find the closest 1 digit number to pair up with and vice versa. They work together to find the answer to their division using any method they wish, including concrete materials and pictorial representations.

Do

Give pairs of children a calculation. Ask one child to solve it mentally and the other to use a written method. They compare answers and decide which method they thought was more appropriate for the calculation. Have a vote to see if all the pairs agreed on the same strategy.

Important Reminder

* Do not teach that when multiplying by 10 "add a zero to the end" as is stated in some textbooks as this shortcut does not develop conceptual understanding of what happens when a number is multiplied by 10 . Teach that when a number is multiplied by 10 , the number becomes ten times larger so each digit moves one column to the left with zero being inserted into the now vacant ones column as a place holder if needed.
* Similarly, do not teach that when dividing by 10 "simply remove a zero" as stated in some textbooks as this shortcut does not develop conceptual understanding and can indeed cause greater confusion when the whole number being divided does not end in a zero or later in Second Level when decimals are being divided by 10. Teach that when a number is divided by 10 , the number becomes ten times smaller so each digit moves one column to the right.

Apply similar methodology to teaching multiplication and division by 100 and 1000.

Topic \& CfE Outcome - Numbers and Number Processes

I have explored the contexts in which problems involving decimal fractions occur and can solve related problems using a variety of methods.

MNU 2-03b

Benchmarks

- Uses multiplication and division facts to the 10th multiplication table.
- Multiplies and divides whole numbers by multiples of 10,100 and 1000.
- Multiplies and divides decimal fractions to two decimal places by 10, 100 and 1000.
- Multiplies whole numbers by two digit numbers.
- Multiplies decimal fractions to two decimal places by a single digit.
- Divides whole numbers and decimal fractions to two decimal places, by a single digit, including answers expressed as decimal fractions, for example, $43 \div 5=8.6$.
Mental Strategies

Recall
Addition and
subtraction facts for multiples of 10 to 1000 and decimal numbers with one or two decimal places,
i.e. $650+$? $=930$
$?-1 \cdot 25=3 \cdot 75$

Skills

(mentally, with jottings and materials if needed)

Find doubles of decimals each with ones and tenths, with bridging, i.e. double $1 \cdot 6$

Add near doubles of decimals, i.e. $2 \cdot 5+$ $2 \cdot 6$

Add or subtract a decimal with ones and tenths, that is nearly a whole number, i.e. $4 \cdot 3+2 \cdot 9$

Add or subtract pairs of decimals with ones, tenths or hundredths, e.g. $0 \cdot 7+$ $3 \cdot 38$

Use knowledge of place value and related calculations, e.g. $680+430,6 \cdot 8+$ 4.3 and $0.68+0.43$ can all be worked out using the related calculation $68+43$

Partition: add or subtract a whole number and adjust, e.g.

Skills

Hundredths - without a calculator

I can add and subtract decimals with at most 2 decimal places in written form, i.e. 67•38-24•21 = 43•17

I can add and subtract multiplies of 10, 100 and 1000 to and from whole numbers and decimal fractions to 2 decimal places

I can multiply and divide decimals with at most 2 decimal places, by a single digit, in written form, i.e. $76 \cdot 35 \div 2=$ $38 \cdot 175$

I can multiply and divide whole numbers and decimal fractions to 2 decimal places by 10, 100 and 1000

Add and Subtract

- I can use what I know about adding and subtracting whole numbers to help me work with decimal fractions to two decimal places
- I can partition decimals into wholes, tenths and hundredths to add or subtract mentally
- I can use doubles and near doubles to help me add and subtract mentally
- I can use an empty number line to show my thinking when adding or subtracting decimals
- I can round and adjust to add or subtract decimals
- I can work out complements to the next whole number or tenth to help me add and subtract decimals
- I can use written calculations to help me add and subtract decimals
- I can add and subtract multiplies of 10,100 and 1000 to and from whole numbers and decimal fractions to 2 decimal places

Multiply and Divide

- I can explain how to multiply and divide by 10, 100 and 1000
- I can multiply any number by 1000 by moving the digits three places to the left
- I can divide any multiple of 1000 by 1000 to give a whole number answer
- I can divide any number by 1000 to give a whole number answer with a remainder or decimal fraction with up to 2 decimal places
- Using my knowledge of table facts and multiplying by 10, can create new facts
(e.g. $3 \times 4=12$ so $30 \times 4=120$ so $30 \times 40=1200,1200 \div 40$ = 30)
- Using my knowledge of table facts and multiplying by 100,

Possible Resources
 Add and Subtract

HAM Teaching Cards
FDP 2.17b

TJ Level D Ch 3
Ex 4 pgs 41-43
TJ Level E Ch 2
Ex 4 Qu 1-5

TJ 2a Ch 5
Ex 5 pgs 48-50
H6 Teacher's Notes
pgs 104-108
H6 Tbk pgs 45-47

H7 Teacher's Notes
pgs 83-85

H7 Tbk pgs 31-32

Multiply and Divide
HAM Teaching Cards
WN 2.7, WN 2.18b,
FDP 2.18b, FDP 2.19b
TJ Level D Ch 6
Ex 1
Ex 2
Ex 3
Ex 4
Ex 5 pgs 66-73
TJ Level E Ch 2
Ex 5
Ex 6
Ex 7
Ex 8
Ex 9 pgs 35-40

TJ 2a Ch 7
Ex 1
Ex 2
Ex 3
Ex 4
Ex 5 pgs 62-67

Assessment

Write
HAM Question Bank WN 2.7,
WN 2.28b, FDP 2.17b, FDP
2.18b, FDP 2.19b

Write

TJ Level D Ch 3 Topic in a
Nutshell pg 44 (miss out Q4)

Write

TJ 2a Ch 5 The 3 R's pg 51 (miss
out Q4 and 5)

Do

Give children a start number, e.g. 1•45, and set the size of jumps they take, e.g. 0•12. They make a sequence by adding on repeatedly.

Say and Do

Call out a decimal or use number cards/spinner to randomly create one. Children double the number and write their answer on their miniwhiteboards. Discuss their strategies for working it out.

Write

TJ Level D Ch 6 Topic in a
Nutshell pg 74

Write

TJ 2a Ch 7 The 3 R's pg 68

Do

Place a chair at the front.
Children stand in a line and the first child sits in the chair. Ask a question involving multiplying multiples of 10,100 or 1000 for the sitting person and the first standing person to answer. If the sitting person is first they stay in position and the other person goes to the end of the line. If the standing person is first, they take over in the hot seat. Continue,

$4 \cdot 3+2 \cdot 9$

$=4 \cdot 3+3-0 \cdot 1$
Double decimals with
ones and tenth and find the corresponding halves, i.e. double $7 \cdot 6$, half of
$15 \cdot 2$

Multiply and divide two digit decimal fractions by a single digit, i.e. $0 \cdot 8 \times 7$, $4 \cdot 8 \div 6$

I can create new facts
(e.g. $3 \times 4=12$ so $300 \times 4=1200,1200 \div 4=300$)

- Using my knowledge of table facts and multiplying by

1000, I can create new facts
(e.g. $3 \times 4=12$ so $3000 \times 4=12000,12000 \div 4=3000$)

- I can combine these skills to work out calculations with multiples of 10,100 and 1000
(e.g. $3000 \times 40=120000$ or $300 \times 400=120000,120000 \div$ $400=300$)
- I can explain how to apply my whole-number strategies to decimal numbers, linking them to the value and position of each digit (e.g. $4 \times 6=24$, so $4 \times 0.6=2 \cdot 4$)
- I can use doubling and halving skills to multiply decimals by a single digit
- I can partition and use the grid method to multiply decimals by a single digit
- I can use the expanded formal written method to multiply decimals by a single digit
- I can use the formal written method to multiply decimals
by a single digit
- I can explain how to apply my whole-number strategies to decimal numbers linking them to the value and position of each digit
- I can use my halving skills to divide decimals
- I can divide using the chunking method
- I can divide using the expanded formal method
- I can divide using the formal method
- I can use multiplication to check my division calculations
- I know how and when to use a zero as a placeholder in
calculations which go beyond tenths and hundredths

H6 Teacher's Notes pgs 108-109

H6 Tbk pgs 48-49

H7 Teacher's Notes pgs 85-91

H7 Tbk pgs 33-39
seeing how long someone can stay in the hot seat.

Do

Draw a function machine on the board and set it to multiply by a given number. Write a decimal as an input number, and have children write the output.

Do

Challenge children to find a decimal which matches given criteria, e.g. has the digit 2 and has two decimal places; has an odd number of decimal places; has a group of recurring digits starting with 2 ; has only odd numbers, etc. Share their answers.

Important Reminder

* Do not teach that when multiplying by 10 "add a zero to the end" as is stated in some textbooks as this shortcut does not develop conceptual understanding of what happens when a number is multiplied by 10 . Teach that when a number is multiplied by 10 , the number becomes ten times larger so each digit moves one column to the left with zero being inserted into the now vacant ones column as a place holder if needed.
* Similarly, do not teach that when dividing by 10 "simply remove a zero" as stated in some textbooks as this shortcut does not develop conceptual understanding and can indeed cause greater confusion when the whole number being divided does not end in a zero or later in Second Level when decimals are being divided by 10. Teach that when a number is divided by 10 , the number becomes ten times smaller so each digit moves one column to the right.

Apply similar methodology to teaching multiplication and division by 100 and 1000.

Topic \& CfE Outcome - Numbers and Number Processes

Having explored the need for rules for the order of operations in number calculations, I can apply them correctly when solving simple problems. MTH 2-03c

Benchmarks

- Applies the correct order of operations in number calculations when solving multi-step problems.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Identify when reordering is appropriate If appropriate, reorder in a sensible way, e.g. adding numbers that will give manageable numbers such as complements to ten etc. Skills (mentally, with jottings and materials if needed) Apply rule of BODMAS in given calculations *Brackets *Orders *Division *Multiplication *Addition *Subtraction	I can use the order of operations to carry out calculations correctly I know that in an addition or multiplication calculation I can reorder the numbers I can look at a calculation and decide which numbers can be reordered I can use brackets to show how numbers have been grouped together to make a calculation easier I know that in some calculations the order cannot be changed I know what BODMAS, BIDMAS and PEDMAS means and can apply the order in calculations - BODMAS means - Brackets, Operations, Division, Multiplication, Addition, Subtraction - I can look at a calculation and decide which numbers I can reorder - I can use my knowledge of place value and friendly numbers to partition an addition calculation - I can explain why the order of the numbers in an addition calculation can be changed without changing the answer e.g. $128+256=(100+200)+(28+56)$ - I can use my knowledge of tables and factors to partition a multiplication calculation - I can explain why the order of the numbers in an addition or multiplication calculation can be changed without changing the answer e.g. $24 \times 6=(20 \times 6)+(4 \times 6)$ - I can use brackets to show which parts of a calculation I am going to do together - I have investigated how the order of operations can change the answer in a calculation - I know that I start by looking at multiplication and division before addition and subtraction - I can use this order to carry out calculations correctly	HAM Teaching Cards WN 2.10, WN 2.11, WN 2.12 TJ 2b Ch 1 Ex 6 pg 11	Write HAM Question Bank WN 2.10, WN 2.11, WN 2.12 Write TJ Assessment Pack MTH 2-03b/c Do Write up an addition, e.g. $3+$ $12+8+6+9+4$. Write four possible answers, e.g. 52, 40, 42, 39. Children work out which answer is correct. Discuss how they reordered the numbers to make the calculation more manageable. Write and Do Roll a dice to give the different numbers in a calculation, addition or multiplication depending on your focus. Children complete the calculation using partitioning. Do Give children a number and ask them to make as many different calculations as they can which give that answer. The calculations must use more than one operation and have brackets. You might give them a time limit to work within. Collate different examples on the board and discuss the range of answers.

Topic \& CfE Outcome - Numbers and Number Processes

I can show my understanding of how the number line extends to include numbers less than zero and have investigated how these numbers occur and are used. MNU 2-04a

Benchmarks

- Identifies familiar contexts in which negative numbers are used.
- Orders numbers less than zero and locates them on a number line.

Mental Strategies	Skills	Possible Resources	Assessment
Skills (mentally, with jottings and materials if needed) Count on from a negative number Count back to a negative number Compare numbers using < and > signs, i.e. $-23<4,-12<-10$	I can use an extended range of numbers including negative numbers Introduction of negative numbers. - Order - positive and negative - Read - Write - Place Value - I can give examples of when and where negative numbers are used - I can create a number line which includes negative numbers and locate negative numbers on a number line - I can discuss how far away positive and negative numbers are from zero and recognise the patterns within this - I can compare and order positive and negative numbers - I can carry out simple addition and subtraction involving negative numbers by counting on and back	HAM Teaching Cards WN 2.5b TJ Level E Ch 5 Ex 1 pg 59 Ex 2 Qu1-7 pgs 59-62 TJ 2 b Ch 8 Ex 1 Ex 2 pgs $81-84$ H7 Teacher's Notes pgs 125-129 H7 Tbk pgs 57-58 H7 Wbk pgs 13-14	Write HAM Question Bank WN 2.5b Write TJ Assessment Pack MNU 2-04a Write Provide the children with a blank number line and a set of numbers, both positive and negative. Ask the children to arrange the numbers correctly on the number line. Write Give the children a set of cards that have both positive and negative numbers on them. Ask the children to order them by a given criteria. Do Children research a world weather forecast and note down a specified number of temperatures that they have found. Children to explain how far one temperature is from another. Children can also compare temperatures using < and $>$ signs.

Topic \& CfE Outcome - Multiples, factors and primes

Having Explored the patterns and relationships in multiplication and division, I can investigate and identify the multiples and factors of numbers.
MTH 2-05a

Benchmarks

- Identifies multiples and factors of whole numbers and applies knowledge and understanding of these when solving relevant problems in number, money and measurement.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Recite and recall all multiplication facts and their corresponding division facts Factor pairs of a given number, i.e. 25-1, 25 5, 5 Give multiples of a given number, i.e. Give the next 5 multiples of 3 Prime Numbers up to 100	I can identify multiples of a given number I can identify factors of a given number and calculate which numbers are prime I can create a set of multiples and find common multiples between tables I can explain what a prime number is - I can explain what a factor is and can work out all the factor pairs of a number - I know that factor and multiple are inverses: 12 is a multiple of 3,3 is a factor of 12 - I know that a prime number only has factors of 1 and itself - I can use my knowledge of multiples and factors to work out all the prime numbers up to 100 - If I am given a number, I can work out if it is prime or not	HAM Teaching Cards WN 2.9 TJ Level E Ch 13 Ex 1 Ex 2 Ex 3 pgs 162-166 TJ 2a Ch 17 Ex 3 pgs 170-171	Write HAM Question Bank WN 2.9 Write TJ Level E Topic in a Nutshell pg 167 Write TJ 2a The 3R's pg 172 Write TJ Assessment Pack MTH 2-05a Do Ask a child to select two cards from a set of 1-10 number cards. Once they pick to cards, ask them to multiply them together, i.e. 3 and 8. (24) Challenge children to find other factor pairs of 24 , e.g. $4 \times$ $6,1 \times 24$. Repeat for different pairs of number cards. Do List key words from the lesson on the board, such as 'factor', 'pair', 'prime', 'multiple' and 'square number'. In pairs, children write true or false statements using key words and numbers, e.g. 'The number 21 has exactly two factors and so is prime'. Invite other children to decide whether the statements are true or false. They discuss the false statements and say what could be changed to make them true.

Topic \& CfE Outcome - Fractions, decimal fractions and percentages

I have investigated the everyday context in which simple fractions, percentages or decimal fractions are used and can carry out the necessary calculations to solve related problems MNU 2-07a

Benchmarks

- Uses knowledge of equivalent forms of common fractions, decimal fractions and percentages, for example, $\frac{3}{4}=0.75=75 \%$, to solve problems.
- Calculates simple percentages of a quantity, and uses this knowledge to solve problems in everyday contexts, for example, calculates the sale price of an item with a discount of 15%.
- Calculates simple fractions of a quantity and uses this knowledge to solve problems, for example, find $\frac{3}{5}$ of 60 .

Topic \& CfE Outcome - Fractions, decimal fractions and percentages
I can show the equivalent forms of simple fractions, decimal fractions and percentages and can choose my preferred form when solving a problem, explaining my choice of method. MNU 2-07b

Benchmarks

- Uses knowledge of equivalent forms of common fractions, decimal fractions and percentages, for example, $\frac{3}{4}=0.75=75 \%$, to solve problems. - Calculates simple fractions of a quantity and uses this knowledge to solve problems, for example, find $\frac{3}{5}$ of 60 .

Mental Strategies	Skills	Possible Resources	Assessment
Recall Equivalent fractions, decimal fractions and percentages for hundredths, i.e. 35% is equivalent to 0.35 and $\frac{35}{100}$ More complex but frequently used equivalent fractions, decimal fractions and percentages, i.e. 33% is equivalent to $\frac{1}{3}$ or $0 \cdot 33$... Skills (mentally, with jottings or materials if needed) Find multiples of 10\% of whole numbers and quantities, e.g. 30\% of $50 \mathrm{ml}, 40 \%$ of $£ 30$ Calculate 1\% by dividing by 100. Use this to find less common percentages, i.e. 17% of 30 - divide by 100 then multiply by 7 Partition a fraction in to parts to work with, i.e. 15% is 10% and 5%	I understand the equivalence of fractions to decimals and vice versa I understand the equivalence of decimals to percentages and vice versa I understand the equivalence of fractions to percentages and vice versa I can choose my preferred process to solve problems and explain my choice and the process carried out Decimals I can explain equivalence of fraction within context I understand simple equivalence of fractions to $\mathbf{2}$ decimal places using money I can problem solve in context - I can discuss the different skills I have built up for fractions, decimals and percentages - I can look at a calculation and work out what it is asking me to do - I can compare the different skills and strategies I know and can decide which are helpful to solve a problem - I can solve a problem and can discuss how I solved it - I can choose a different strategy and compare them to see which is more helpful	HAM Teaching Cards FDP 2.21 TJ Level E Ch 6 Ex 3 Ex 4 Ex 5 Ex 6 pgs 71-76 H6 Teacher's Notes pgs 112-119 H6 Tbk pgs 52-54 H7 Teacher's Notes pgs 60-62 H7 Tbk pg 21 H7 Wbk pg 5	Write HAM Question Bank FDP 2.21 Write TJ Level ECh 6 Topic in a Nutshell Write TJ Assessment Pack MNU 2-07b Say Model writing a calculation on the board, talking out loud as you solve it, describing each step and why you are making that decision. Ask children if they would have done anything differently. Once you have completed a few different examples using different strategies, ask children to come out and lead an example.

Topic \& CfE Outcome - Fractions, decimal fractions and percentages
I have investigated how a set of equivalent fractions can be created, understanding the meaning of simplest form, and can apply my knowledge to compare and order the most commonly used fractions. MTH 2-07c

Benchmarks

- Creates equivalent fractions and uses this knowledge to put a set of most commonly used fractions in order.
- Expresses fractions in their simplest form.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Equivalent fractions, decimal fractions and percentages for hundredths, i.e. 35% is equivalent to $0 \cdot 35 \text { and } \frac{35}{100}$ More complex but frequently used equivalent fractions, decimal fractions and percentages, i.e. 33% is equivalent to $\frac{1}{3}$ or $0 \cdot 33 \ldots$ Use knowledge of factors to simplify	I can demonstrate the equivalence of fractions using concrete materials and pictorial representations that help me make sense of the problem, i.e. bar model etc. I can create equivalent fractions confidently and explain my methods I can simplify fractions confidently and explain my thinking I understand the concept of and can find a lowest common denominator I can use simplification to order common fractions I can convert a mixed fraction into an improper fraction I can convert an improper fraction into a mixed number - I can apply these processes and strategies in contexts that are relevant in real-life	H7 Teacher's Notes pgs 60-62 H7 Tbk pgs 21 H7 Teacher's Notes pgs 62-73 H7 Tbk pgs 22-27 Linked to work in MNU 2-07a \& MNU 2-07b	Write TJ 2b Consolidation of Fractions pgs 119 Q1-5 Write TJ Assessment Pack MTH 2-07c

Topic \& CfE Outcome - Money

I can manage money, compare costs from different retailers, and determine what I can afford to buy. MNU 2-09a

Benchmarks

- Carries out money calculations involving the four operations.
- Compares costs and determines affordability within a given budget.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Rounding for estimating total costs Number bonds to 100 Counting on in 10s Skills (mentally, with jottings and materials if needed) Apply mental strategies and skills from MNU 2-03a in context of money	I have investigated more complex offers - most cost effective, i.e. is it cost effective to travel further to buy something in order to save money on a deal? I can work to a budget to buy certain items I understand the benefits of saving to make purchases more affordable I can apply my mental agility strategies and the formal written method as appropriate to help with money calculations	TJ 2a Ch 8 Ex 5 pgs 76-78 TJ 2 b Ch 7 Ex 3 pg 68 TJ Profit and Loss (Finance unit) Available for freedownload from TJ website Linked to work in MNU 2-09c	Write TJ Assessment Pack MNU 2-09a

Topic \& CfE Outcome - Money

I understand the costs, benefits and risks of using bank cards to purchase goods or obtain cash and realise that budgeting is important.
MNU 2-09b

Benchmarks

- Demonstrates understanding of the benefits and risks of using bank cards and digital technologies.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Rounding for estimating total costs Number bonds to 100 Counting on in 10 s Skills (mentally, with jottings and materials if needed) Apply mental strategies and skills from MNU 2-03a in context of money	I have investigated interest rates of various bank/credit cards I know how to compare rates for buying goods and taking out cash I have investigated debt and how this can mount up including payment methods - I can talk about the ways I can access money - I can talk about representations of money such as vouchers, credit cards, rail/pre-pay tickets - I can give examples of where people keep the money they have and how they access it - I can talk about how people earn or obtain money - I can talk about how to be safe with money - I understand why people have bank or building society accounts - I can talk about the purpose of a bank and its features - I have explored different bank accounts and their benefits - I can discuss the different ways in which people might keep a log of their spending - I can interpret, discuss and check a bank statement in different formats - I understand that different countries use different currencies - I have explored how different currencies relate to pounds and know that the rate of exchange changes over time - I can change an amount from pounds to another currency - I can change an amount in another currency to pounds - I can use my estimation skills to work out roughly what something will cost in pounds when the price is displayed in a different currency	HAM Teaching Cards MF 2.1, MF 2.7, MF 2.8 TJ 2 b Ch 7 Ex 1 Ex 2 pgs 66-67 TJ 2 b Ch 7 Ex 5 Ex 6 Ex 7 Ex 8pgs 71-78 TJ Level ECh 4 Ex 2 pgs 53-56	Write HAM Question Bank MF 2.1, MF 2.7, MF 2.8 Write TJ 2a The 3R's pgs 79 Q1-4 Write TJ Assessment Pack MNU 2-09b Say One at a time, call out a representation of money and children put their hand up if they have ever used it, for example, gift card, coin, voucher. Include some which they will not have used, such as a credit card, and discuss who uses them and when. Do Tell children how much was in an account at the start of the month and then list the different things money was spent on and their cost. They work out how much was left at the end of the month. Discuss the different ways to do this (e.g. count back or subtract each amount individually or work out the total spent and take this away from the initial amount).

Topic \& CfE Outcome - Money

I can use the terms profit and loss in buying and selling activities and can make simple calculations for this. MNU 2-09c

Benchmarks

- Calculates profit and loss accurately, for example, when working with a budget for an enterprise activity.
 Council

Topic \& CfE Outcome - Time

I can use and interpret electronic and paper-based timetables and schedules to plan events and activities and to make time calculations as part of my planning. MNU 2-10a

Benchmarks

- Reads and records time in both 12 hour and 24 hour notation and converts between the two.
- Knows the relationships between commonly used units of time and carries out simple conversion calculations, for example, changes $1 \frac{3}{4}$ hours into minutes.
- Uses and interprets a range of electronic and paper-based timetables and calendars to plan events or activities and solve real life problems.
- Calculates durations of activities and events including situations bridging across several hours and parts of hours using both 12 hour clock and 24 hour notation.

Mental Strategies	Skills	Possible Resources	Assessment
Recall 1 hour $=60 \mathrm{mins}$ $\frac{3}{4}$ an hour $=45 \mathrm{mins}$ $\frac{1}{2}$ an hour $=30 \mathrm{mins}$ $\frac{1}{4}$ an hour $=15 \mathrm{mins}$ 12 o'clock after am is noon 12 o'clock after pm is midnight Skills (mentally, with jottings and materials if needed) Counting on and back in fives Partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times) When calculating durations count on to the next hour, find the hours and add on the remaining minutes, e.g. from 10.25am to 12.10 pm 10.25am $\rightarrow 11.00 \mathrm{am}$ 35mins 11.00am $\rightarrow 12.10 \mathrm{pm}$ 1hr 10m Duration is 1 hr 45mins	I can calculate duration in hours and minutes I can calculate duration in seconds I can use $\mathbf{2 4}$ hour times and relate it to $\mathbf{1 2}$ hour times I can use time tables set out in both 12 and $\mathbf{2 4}$ hour clock times - I can give examples of how people record times or dates that are important to them - I can interpret timetables, diaries and calendars and can ask and answer questions about the information they show - I can devise timetables, diaries and calendars to show my decisions and plans - I can plan for an event considering the time calculations and practicalities involved	HAM Teaching Cards T 2.6 TJ Level E Ch 3 Ex 1 Ex 2 Ex 3 pgs $43-45$ TJ 2a Ch 4 Ex 4 pg 33 TJ 2b Ch 3 Ex 1 Ex 2 pgs 21-24 H7 Teacher's Notes pgs 190-198 H7 Tbk pgs 87-91	Write HAM Question Bank T 2.6 Write TJ Level E Ch 3 Topic in a Nutshell Write TJ Assessment Pack MNU 2-10a Do Discuss a possible event in the school calendar, such as a, school trip, etc. Talk about why planning time is important for the context, for example, buses have to be booked, each class must have a chance to do different activities, etc. Talk about how to plan this and to find out times which are important. Children then work in pairs or small groups to create a timetable for the event. Where possible, encourage them to find out and use real-life facts and information, for example, using an online route planner to work out travel times, opening times, etc. They present their timetable to the class, giving reasons for their decisions, for example, We want the bus to leave for the museum at 8:30 am because it opens at 9 am and it will take half an hour to travel there.

Topic \& CfE Outcome - Time

I can carry out practical tasks and investigations involving timed events and can explain which unit of time would be most appropriate to use.
MNU 2-10b

Benchmarks

- Chooses the most appropriate timing device in practical situations and records using relevant units, including hundredths of a second.
- Selects the most appropriate unit of time for a given task and justifies choice.

Mental Strategies	Skills	Possible Resources	Assessment
Recall 1 minute $=60$ seconds Skills (mentally, with jottings and materials if needed) Counting on and back in fives Partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times)	I can time various events I can make conversions between seconds, minutes and hours I can decide on the appropriate measurement for timing and event * I know that there are 60 seconds in a minute * I know that there are 100 milliseconds in a second * I can select appropriate devices to use to time events, i.e. stopwatch, use timer on phone/tablet device, sand timer	TJ Level E Ch 3 Ex 3 pgs 46-47	Write TJ Assessment Pack MNU 2-10b Say Give children a list of events and ask them what unit of measurement they feel appropriate to time them in, i.e. 100 m sprint, marathon race. Ask the children to give reasons for their answers

Topic \& CfE Outcome - Time

Using simple time periods, I can give a good estimate of how long a journey should take, based on my knowledge of the link between time, speed and distance. MNU 2-10c

Benchmarks

- Estimates the duration of a journey based on knowledge of the link between speed, distance and time.

Mental Strategies	Skills	Possible Resources	Assessment
Recall 1 minute $=60$ seconds Know that speed = distance \div time Skills (mentally, with jottings and materials if needed) Counting on and back in fives Partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times)	I have discussed experiences of different speeds and have a sense of what different speeds feel like I have undertaken practical investigation involving speed I know that speed is the distance travelled in a given time I can complete simple calculations using speed distance and time I can apply my knowledge of speed, distance and time to complete investigations and calculations - I am developing a sense of a broader range of time units and how they are used and I can select the most appropriate to solve a problem - I can devise and carry out practical experiments to solve problems involving time - I can use my knowledge of timetables, schedules and calendars to help me solve problems - I have explored the questions I need to ask in order to make decisions about journey times and modes of transport - I can look at a problem and decide how my knowledge of time can help me solve it - I can choose appropriate calculation skills to solve a problem	HAM Teaching Cards T 2.8, T 2.7 TJ 2b Ch 9 Ex 1 Ex 2 Ex 3 pgs $87-92$ Ex 4 pgs 92-93	Write HAM Question Bank T 2.7 and T2.7 Write TJ Assessment Pack MNU 2-10c Do Set questions giving different time periods and the distances travelled and ask children to calculate the speed by working out the distance travelled in an hour. I travelled 2 miles in 10 minutes. I travelled 200 miles in 2 hours. I travelled 270 miles in 9 hours. Children work individually or with a partner, write their responses on a whiteboard and then show them. Discuss how they worked it out. Ask children to come up with similar questions which could be worked out mentally using table facts. Do Ask children to consider a trip or journey they would like to make, for example to the seaside, London, mainland Europe or a theme park. List their suggestions on the board. Choose one and discuss the questions that they might need to ask and find answers to in order to make decisions about the journey times and method of transport. Consider a trip to Belgium. What methods of transport could you use? They could drive and take a ferry or a train, or they could catch a bus to the airport and then fly. Discuss issues that might lead them to choose one method rather than another (e.g. cost, journey time, environmental issues).

Topic \& CfE Outcome - Measurement

I can use my knowledge of the sizes of familiar objects or places to assist me when making an estimate of measure.

MNU 2-11a and

I can use the common units of measure, convert between related units of the metric system and carry out calculations when solving problems.

MNU 2-11b

Benchmarks

- Uses the comparative size of familiar objects to make reasonable estimations of length, mass, area and capacity.
- Estimates to the nearest appropriate unit, then measures accurately: length, height and distance in millimetres (mm), centimetres (cm), metres (m) and kilometres (km); mass in grams (g) and kilograms (kg); and capacity in millilitres (ml) and litres (I).
- Converts between common units of measurement using decimal notation, for example, $550 \mathrm{~cm}=5 \cdot 5 \mathrm{~m} ; 3 \cdot 009 \mathrm{~kg}=3009 \mathrm{~g}$.
- Chooses the most appropriate measuring device for a given task and carries out the required calculation, recording results in the correct unit.
- Reads a variety of scales accurately.
- Shows awareness of imperial units used in everyday life, for example, miles or stones.

Mental Strategies	Skills	Possible Resources	Assessment
Recall 1 metre $=100 \mathrm{~cm}$ $\begin{aligned} & \frac{1}{2} \text { metre }=50 \mathrm{~cm} \\ & \frac{1}{4} \text { metre }=25 \mathrm{~cm} \\ & \frac{1}{10} \text { metre }=10 \mathrm{~cm} \end{aligned}$ 10 millimetres $=1 \mathrm{~cm}$ 1 Kilometre $=1000$ metres Skills (mentally, with jottings and materials if needed) When reading scales, work out the value of increments of the scale by reading two main points then count the number of intervals. Divide the amount between two main points by the number of intervals Doubling and halving for estimating sizes Rounding to the nearest 10 and 100 Multiplying and dividing by 100 and 1000 (Whole number answers only)	I can use the length of a ruler or metre stick to estimate the lengths of items to the nearest cm I can measure in mm, cm and m with increasing accuracy I can read scales in a variety of graduations/intervals with increasing accuracy Length - I can use kilometre, metre, centimetre and millimetre in calculations I can demonstrate a sense of imperial measurement and give examples, e.g. inches, feet, yards etc. I can give examples of imperial units of length, when they are used and show that I have sense of their size	Length TJ Level E Ch 10 Ex 1 pgs 118-120 TJ 2b Ch 13 Consolidation of Measurement (Length) pg 127 H6 Teacher's Notes pgs 154-157 H6 Tbk pgs 73-74 H7 Teacher's Notes pgs 148-149 H7 Tbk pg 68	Do Write one or more measurements or measurement words on the board. Children work in pairs or small groups and make up a word problem using the given words or measurements. Go around the groups and take examples for the others to solve. Do On the board write a measurement or a word relating to measurement. Children work in small groups and make up as many questions as they can with this as the answer. For example, for 10 cm , they could write a simple question such as 'What is double 5 cm ?' or they might write 'What is the length of a side of a square that has a perimeter of 40 cm ?' or 'What is one tenth of a metre?' 'How else can you write 0.1 m ?' Share their different types of questions.

Topic \& CfE Outcome - Measurement

I can use my knowledge of the sizes of familiar objects or places to assist me when making an estimate of measure.
MNU 2-11a and
I can use the common units of measure, convert between related units of the metric system and carry out calculations when solving problems. MNU 2-11b continued

Benchmarks

- Uses the comparative size of familiar objects to make reasonable estimations of length, mass, area and capacity.
- Estimates to the nearest appropriate unit, then measures accurately: length, height and distance in millimetres (mm), centimetres (cm), metres (m) and kilometres (km); mass in grams (g) and kilograms (kg); and capacity in millilitres (ml) and litres (I).
- Converts between common units of measurement using decimal notation, for example, $550 \mathrm{~cm}=5.5 \mathrm{~m} ; 3.009 \mathrm{~kg}=3009 \mathrm{~g}$.
- Chooses the most appropriate measuring device for a given task and carries out the required calculation, recording results in the correct unit.
- Reads a variety of scales accurately.
- Shows awareness of imperial units used in everyday life, for example, miles or stones.

Mental Strategies	Skills	Possible Resources	Assessment
Recall $1 \mathrm{~kg}=1000 \mathrm{~g}$ $\begin{aligned} & \frac{1}{2} \mathrm{~kg}=500 \mathrm{~g} \\ & \frac{1}{4} \mathrm{~kg}=250 \mathrm{~g} \\ & \frac{1}{10} \mathrm{~kg}=100 \mathrm{~g} \end{aligned}$ Skills (mentally, with jottings and materials if needed) When reading scales, work out the value of increments of the scale by reading two main points then count the number of intervals. Divide the amount between two main points by the number of intervals Multiplying and dividing by 100 and 1000	I can demonstrate that I have a sense of weight of items, l.e. a bag of sugar and can use this to estimate the weight of other items to the nearest hundredth of a $\mathrm{kg}(10 \mathrm{~g})$ I can measure in g , and kg with increasing accuracy I can read scales in a variety of graduations/intervals with increasing accuracy Weight - I can use kilograms and grams in calculations - I have investigated the relationship between kilograms and grams I can demonstrate a sense of imperial measurement and give examples, e.g. stone, pound, ounce etc. I can give examples of imperial units of weight, when they are used and show that I have sense of their size	Weight TJ 2b Ch 13 Consolidation of Measurement (Weight) pg 130 H7 Teacher's Notes pgs 155-156 H7 Tbk pgs 72-74	Do Write one or more measurements or measurement words on the board. Children work in pairs or small groups and make up a word problem using the given words or measurements. Go around the groups and take examples for the others to solve. Do On the board write a measurement or a word relating to measurement. Children work in small groups and make up as many questions as they can with this as the answer. For example, for 10 g , they could write a simple question such as 'What is double 5g?' or they might write 'What is one tenth of a 100 g ? ‘How else can you write $0 \cdot 1 \mathrm{~g}$?' Share their different types of questions.

Topic \& CfE Outcome - Measurement

I can use my knowledge of the sizes of familiar objects or places to assist me when making an estimate of measure.

MNU 2-11a and

I can use the common units of measure, convert between related units of the metric system and carry out calculations when solving problems MNU 2-11b continued

Benchmarks

- Uses the comparative size of familiar objects to make reasonable estimations of length, mass, area and capacity.
- Estimates to the nearest appropriate unit, then measures accurately: length, height and distance in millimetres (mm), centimetres (cm), metres (m) and kilometres (km); mass in grams (g) and kilograms (kg); and capacity in millilitres (ml) and litres (I).
- Converts between common units of measurement using decimal notation, for example, $550 \mathrm{~cm}=5 \cdot 5 \mathrm{~m} ; 3 \cdot 009 \mathrm{~kg}=3009 \mathrm{~g}$.
- Chooses the most appropriate measuring device for a given task and carries out the required calculation, recording results in the correct unit.
- Reads a variety of scales accurately.
- Shows awareness of imperial units used in everyday life, for example, miles or stones.

Mental Strat
$\frac{\text { Recall }}{1 I}=1000 \mathrm{ml}$
$\frac{1}{2} I=500 \mathrm{ml}$
$\frac{1}{4} I=250 \mathrm{ml}$
$\frac{1}{10} I=100 \mathrm{ml}$

Skills

(mentally, with jottings and materials if needed)

When reading

 scales, work out the value of increments of the scale by reading two main points then count the number of intervals. Divide the amount between two main points by the number of intervalsMultiplying and dividing by 100 and 1000
Skills
I can demonstrate that I have a sense of certain volumes,
i.e. litre of water and can use this to estimate capacity and
volume to the hundredth of a litre (10mI)
I can measure in ml and I, with increasing accuracy
I can read scales in a variety of graduations/intervals with
increasing accuracy
Volume

I can use litres and millilitres in calculations

I have investigated the relationship between litres and
millilitres

- I can interpret a word or practical problem and decide
which types of measure to use
- I can solve a variety of word and practical problems
working out the steps involved and estimating and
measuring where appropriate
- I can decide appropriate units to use in solving my problem
and make any necessary conversions
- I can decide how accurate I need to be
- I can apply my calculation skills to help me solve the
problem
- I can record and explain my thinking so that it makes sense
to somebody else
- I can check that my solution addresses the original
problem
- I have reflected on my and others' ways of working and
solutions and can talk about how I would approach similar
problems in future
Possible Resources
VolumHAM Teaching CardsM 2.6

TJ Level D Ch 17
Ex 1
Ex 2 pgs 180-183
TJ 2a Ch 13 c
Ex 4 pgs 137-139
TJ 2b Ch 13
Consolidation of
Measurement
(Volume) pg 129
Qu 15-18
TJ Level E Ch 16
Ex 3 pgs 189-191
H7 Teacher's Notes
pgs 172-173

Assessment
Write
HAM Question Bank M 2.6

Write

TJ Assessment Pack
MNU 2-11a

Write

TJ Assessment Pack
MNU 2-11b

Do

Write one or more measurements or measurement words on the board. Children work in pairs or small groups and make up a word problem using the given words or measurements. Go around the groups and take examples for the others to solve.

Do

On the board write a measurement or a word relating to measurement. Children work in small groups and make up as many questions as they can with this as the answer. For example, for 500 ml , they could write a simple question such as 'What is half of a litre?' Council

Topic \& CfE Outcome - Measurement

I can explain how different methods can be used to find the perimeter and area of a simple 2D shape or volume of a simple 3D object.
MNU 2-11c

Benchmarks

- Calculates the perimeter of simple straight sided 2D shapes in millimetres (mm), centimetres (cm) and metres (m).
- Calculates the area of squares, rectangles and right-angled triangles in square millimetres (mm^{2}), square centimetres (cm^{2}) and square metres (m^{2}).
- Calculates the volume of cubes and cuboids in cubic centimetres (cm^{3}) and cubic metres (m^{3}).
- Demonstrates understanding of the conservation of measurement, for example, draw three different rectangles each with an area of $24 \mathrm{~cm}^{2}$. - Draws squares and rectangles accurately with a given perimeter or area.

Mental Strategies	Skills	Possible Resources	Assessment

$A=1 \times b$

A of $\Delta=(1 \times b) \div 2$
$V=I x b x h$

Recite and recall all multiplication and division facts

When given a total, give possible factor pairs that would make the amount, e.g. $24=12 \times 2$ or $6 x$ 4 or 24×1 and relate this to area

Addition of several numbers and reordering numbers to make addition easier

- I can use the formula I \mathbf{x} b to calculate area of rectangles and squares
- Calculate the area of composite shapes
- Calculate area of right-angled triangles by halving area of square or rectangle
- I have explored how to work out the area of a triangle using my knowledge of areas of squares and rectangles
- I can create a compound shape using squares, rectangles and triangles
- I can look at a compound shape and can split it into squares, rectangles and triangles
- I can work out the area of squares, rectangles and triangles within a compound shape and can combine them to find the total area

Perimeter

- I can calculate the perimeter of shapes by adding lengths of sides using appropriate measurements
- If I know the perimeter of a shape, with some further information I can calculate the lengths of the sides, i.e. a square with a perimeter of 16 cm ... 4 cm per side.

Volume

- Use cubed unit of measurement
- I can calculate the volume of cubes and cuboids and investigate formula $\mathrm{x} \mathbf{b} \mathbf{x} \mathrm{h}$
- I can talk about what volume and surface area are and the units we measure them in

Possible Resources	Assessment
Area	Write
HAM Teaching Cards	HAM Question Bank M 2.4c, MC
M 2.4c	2.4d
TJ Level D Ch 14	Write
Ex 5	TJ Level D Ch 14 Topic in a
Ex 6	Nutshell
Ex 7 pgs 156-162	
	Write
TJ Level E Ch 10	TJ Level E Ch 16 Topic in a
Ex 3	Nutshell
Ex 4	
Ex 5	Write
Ex 6 pgs 123-130	TJ 2a Ch 13 The 3 R's pg 129
TJ 2a Ch 13b	Write
Ex 3 pgs 127-128	TJ Assessment Pack
	MNU 2-11c
TJ 2b Ch 13	
Consolidation of	Do
Measurement (Area)	Call out or write up the
pg 128	length/base and height of a right-angled triangle. Children
H7 Teacher's Notes	write the area on their
pgs 160-167	whiteboard and hold this up to show you.
H7 Tbk pgs 75-77	
	Do
Perimeter	Children work in pairs. Draw a
TJ Level D Ch 14	triangle on the board and give
Ex 4 pgs 154-155	measurements for the appropriate sides (i.e. for a
TJ Level E Ch 10	right-angled triangle write
Ex 2 pgs 121-122	measurements for the sides forming the right angle). One
TJ 2a Ch 13a	child works out the area of a
Ex 4 Qu 5-10	rectangle with those dimensions
pg 120	and writes it on their whiteboard. The other child
H7 Teacher's Notes pgs 152-153	halves it and writes the answer on their whiteboard. Repeat for
pgs 152-153	different triangles with children
H7 Tbk pg 71	swapping roles.
Volume	Make
HAM Teaching Cards	Children are given connecting
M 2.4d	cubes to use and a cubic volume. They work to create a
TJ Level D Ch 17	cube or cuboid with the
Ex 4 pg 184	specified volume. Is there more than one solution?

Write

TJ Level D Ch 14 Topic in a Nutshell

Write

TJ Level E Ch 16 Topic in a

TJ 2a Ch 13 The 3 R’s pg 129

TJ Assessment Pack
MNU 2-11c

Call out or write up the length/base and height of a right-angled triangle. Children whiteboard and hold this up to show you.

Children work in pairs. Draw a triangle on the board and give measurements for the appropriate sides (i.e. for a right-angled triangle write forming the right angle). One child works out the area of a and writes it on their whiteboard. The other child hat ir whiter different triangles with children swapping roles.

Make

 cubes to use and a cubic volume. They work to create a specified volume. Is there more than one solution?- I can make two or more different solid shapes with the same volume using centimetre cubes
- I can make a solid and tell you its volume
- I can find the volume of a cube or cuboid by using my knowledge of arrays and multiplication facts
- I can find the surface area of a simple 3D object using my measurement and calculation skills

TJ Level E Ch 16 pgs
Ex 1
Ex 2 183-188

TJ 2a Ch 13c
Ex 4 pgs 137-139
TJ 2b Ch 13
Consolidation of
Measurement (Volume) Qu 19-20
pg 129
H7 Teacher's Notes pgs 170-172

Say and Do

Roll a dice three times to give the dimensions of a cuboid in cm - children work out the volume in cubic centimetres. They write their responses on their whiteboards and they all show at the same time. Discuss how they worked it out and if they reordered the numbers to make them any easier. Repeat for different numbers.

Topic \& CfE Outcome - Mathematics - its impact on the world, past, present and future

I have worked with others to explore, and present our findings on, how mathematics impacts on the world and the important part it has played in advances and inventions. MTH 2-12a

Benchmarks

- Researches and presents examples of the impact mathematics has in the world of life and work.
- Contributes to discussions and activities on the role of mathematics in the creation of important inventions, now and in the past.
$\left.\left.\begin{array}{|l|l|l|l|}\hline \text { Mental Strategies } & \text { Skills } & \text { Possible Resources } & \text { Assessment } \\ \hline \begin{array}{l}\text { Skills } \\ \text { (with jottings and } \\ \text { materials if needed) }\end{array} & \begin{array}{l}\text { I know that mathematics underpins scientific and } \\ \text { technological progress } \\ \text { Apply mental } \\ \text { strategies and skills } \\ \text { from MNU 2-03a and } \\ \text { MNU 2-05a }\end{array} & \begin{array}{l}\text { I am developing an understanding about the needs of } \\ \text { people and the important role mathematics plays in our } \\ \text { everyday lives }\end{array} & \begin{array}{l}\text { HAM Teaching Cards } \\ \text { AT 2.7c }\end{array} \\ & \begin{array}{l}\text { I know that statistics play an important role in changing } \\ \text { minds and behaviour, i.e. Richard Doll's pioneering work } \\ \text { connecting smoking with lung cancer }\end{array} & \begin{array}{l}\text { Write } \\ \text { HAM Question Bank AT 2.7c }\end{array} \\ \text { I have studied some famous mathematicians } \\ \text { Number Systems } \\ \bullet \quad \text { Pascal's Triangle }\end{array} \quad \begin{array}{l}\text { Write } \\ \text { TJ Assessment Pack } \\ \text { MTH 2-12a }\end{array}\right] \begin{array}{l}\text { Make } \\ \text { Ask children to work in pairs to } \\ \text { plan a short explanation } \\ \text { showing others how to create } \\ \text { Pascal's triangle and explaining } \\ \text { what is special about the } \\ \text { numbers it contains. Encourage } \\ \text { them to describe patterns } \\ \text { within the triangle and explain } \\ \text { how to generate each new row. }\end{array}\right\}$ Council

Topic \& CfE Outcome - Patterns and relationships

Having explored more complex number sequences, including well-known named number patterns, I can explain the rule used to generate the sequence, and apply it to extend the pattern. MTH 2-13a

Benchmarks

- Explains and uses a rule to extend well known number sequences including square numbers, triangular numbers and Fibonacci sequence. - Applies knowledge of multiples, square numbers and triangular numbers to generate number patterns.
 Council

Topic \& CfE Outcome - Expressions and equations

I can apply my knowledge of number facts to solve problems where an unknown value is represented by a symbol or letter. MTH 2-15a

Benchmarks

- Solves simple algebraic equations with one variable, for example, $a-30=40$ and $4 b=20$.

Mental Strategies	Skills	Possible Resources	Assessment
Recall	I can calculate the value of a letter in an equation using	ing Cards	Write
Know what greater than, less than, equal to and not equal to means and be able to give examples, i.e. 36 is greater than 15. Tell me a number that is less than 21.	more complex addition, subtraction, multiplication and	AT 2.9, AT 2.11, AT	HAM Question Bank AT 2.9, AT
	division facts, i.e. $2 x-4=$	2.12, AT 2.13	2.11, AT 2.12, AT 2.13
	I can create and solve simple equations	l D Ch	Writ
		pgs 75-8	TJ Level D Ch 7 Topic in a
	I can solve word problems by creating and solving equations		Nutshell pgs 85-86Q4-9
		TJ level E Ch 8	
		Ex 1 pgs 92-93	Write
	I can explain the strategies used to solve an equation	TJ 2a Ch 10	TJ 2a Ch 10 The 3 R's pg 96 Q4 6
Skills (mentally, with jottings and materials if needed)	- I understand that letters can be used to represent unknown numbers - I can work out how many of a letter there are and can write it using the appropriate form $\text { (e.g. } \mathrm{t}+\mathrm{t}+\mathrm{t}=3 \mathrm{t} \text {) }$	Ex 3 pgs 94-95	Write
		TJ2b Ch 11	TJ 2b Ch 11 The 3R's pg 118
		Consolidation of Algebra pg 108	Q1-4
Add or subtract a pair (or more) of numbers to demonstrate knowledge of equality,$\text { i.e. } 23+3=18+8$	- I can gather together terms letter and work out how many there are altogether using my number bonds (e.g. $2 \mathrm{t}+4 \mathrm{t}-\mathrm{t}$ = 5t) - I have explored how to create an equation from a function	Ex 1	Write
		Ex 2	TJ Assessment Pack MTH 2-15a
		Ex 3 pgs 109-113	
			Do
	- I can express an equation as a function machine - I can explain how each part of the equation relates to each	H7 Teacher's Notes pgs 118-122	Write an equation on the board and have children work
	- I can explain how each part of the equation relates to each part of the function machine	H7 Tbk pgs 54-56	individually or in a pair to draw a function machine to solve it.
Find the value of a missing number by applying inverse operations -	- I can use inverse operations to work backwards through a function machine to work out the unknown value of the	http://www.mathsisf	Draw the function machine on the board and then work
	letter	un.com/algebra/intro	through it together to work out
	- I can check that my answer is sensible by using it as the input of the function machine	duction.html	the value of the unknown letter.
38-24 = 14	- I can solve simple equations using my known number facts		Do
$\Delta=14$	- I can draw or make a model of a balance to represent a simple equation		Write an equation on the board. Children work in pairs. One child
Find the value of a missing number by applying balancing -$\begin{aligned} & \Delta+24=38 \\ & \Delta+24-24=38-24 \\ & \Delta=14 \end{aligned}$	- I know I have to find what balances the unknown number - I know I have to do the same thing to both sides to keep		solves it by balancing and the other uses a function machine.
	the equation balanced - I can work out what information I know and what I need to		Compare both methods. Which do they prefer?
	work out		
	- I can use a letter to represent an unknown number - I can work out what operations are needed to solve a word problem - I can write an equation to represent the problem and solve it - I can look at what the answer means in terms of the word problem - I understand that finding the value of an unknown number will balance both sides of an equation - I understand that the balance remains when the same thing is done to both sides of the equation. - I can write an equation to represent a word problem and solve it		Make
$\Delta=14$			Tell children the value of an unknown number, e.g. $t=3$.
			They try to create an equation with this value,
			$\text { e.g. } 5 t+2=17$ To extend the challenge you
			could ask the children to make
			up a matching word problem to
			place it in context.

Topic \& CfE Outcome - Properties of 2D shapes and 3D objects

Having explored a range of 3D objects and 2D shapes, I can use mathematical language to describe their properties, and through investigation can discuss where and why particular shapes are used in the environment. MTH 2-16a

Benchmarks

- Describes 3D objects and 2D shapes using specific vocabulary including regular, irregular, diagonal, radius, diameter and circumference. Applies this knowledge to demonstrate understanding of the relationship between 3D objects and their nets.
- Identifies and describes 3D objects and 2D shapes within the environment and explains why their properties match their function. - Knows that the radius is half of the diameter.

Mental Strategies	Skills	Possible Resources	Assessment
	2D Shape - I can identify and name right angled, equilateral, isosceles and scalene triangles - I can use rigidity of triangles in model making - I can use vocabulary of circles; radius, diameter and circumference - I can define and classify quadrilaterals and discuss the properties of quadrilaterals 3D Objects - I have investigated more complex 3D shapes and can discuss the names of the shapes and their properties	2D Shape TJ Level D Ch10 Ex 1 Ex 2Qu1-4 Ex 3 Pgs 118-121 TJ 2a Ch 9 pgs 82-84 TJ 2b Ch 10 Consolidation of 2D work pg 96 Ex 1, Ex 2, Ex 3, Ex 4 Ex5, Ex 6 pgs 97-105 (Select aspects to focus on) H7 Teacher's Notes pgs 218-224 H7 Tbk pgs 101-105 3D Objects TJ Level D Ch 16 pgs 172-178 TJ 2b Ch 16 Consolidation of 3-Dimensions pg 146 H7 Teacher's Notes pgs 214-216 H7 Tbk pgs 99 - 100	Write TJ Assessment Pack MTH 2-16a Write TJ Level D Ch 16 Topic in a Nutshell pg 179 Make Provide children with art straws and ask them to make specified shapes using the straws. Children have to present their shape to others in their group, explaining the properties that their shape has. This could be completed for 2D shapes or 3D objects. Make Children to create a poster that explains the properties of different triangle types.

Topic \& CfE Outcome - Properties of 2D shapes and 3D objects

Through practical activities, I can show my understanding of the relationship between 3D objects and their nets. MTH 2-16b

Benchmarks

- Describes 3D objects and 2D shapes using specific vocabulary including regular, irregular, diagonal, radius, diameter and circumference. Applies this knowledge to demonstrate understanding of the relationship between 3D objects and their nets.
- Identifies and describes 3D objects and 2D shapes within the environment and explains why their properties match their function.
- Knows that the radius is half of the diameter.

Mental Strategies	Skills	Possible Resources	Assessment
	I can create nets of a: - Cube - Cuboid - Triangular prism - Triangular pyramid - Square based pyramid - I can look at a 3D object and visualise the net that it is made from - pentagonal prism, pentagonal pyramid, hexagonal prism, hexagonal pyramid, octahedron - From my visualisation, I can draw a net to create a simple 3D object - I can make a hollow 'skeleton' shape to match a given 3D object - I can take apart a hollow 3D object to create its net	HAM Teaching Cards SPM 2.1 TJ 2b Ch 16 Ex 1 Ex 2 Ex 3 Ex 4 pgs 147-153 H6 Teacher's Notes pgs 227-231 H6 Tbk pgs 104-106 Linked to work in MTH 2-16a http://nrich.maths.or $\mathrm{g} / 1148$	Write HAM Question Bank SPM 2.1 Write TJ 2b Ch 16 The 3 R's pgs 154 155 Write TJ Assessment Pack MTH 2-16b Do Draw part of a net on the board and ask children what you could add to complete it and what shape it would make. For example, if you draw three rectangles it could be completed in several different ways to create a cuboid, a triangular prism, etc. Say and Do Start to draw a net on the board. As you do so, children quietly discuss with a partner what 3D object they think this is the net of and whether or not you have introduced a mistake. After a few minutes, stop and take children's suggestions. For example, is this the net of a cuboid? What needs to be corrected or added?

Topic \& CfE Outcome - Properties of 2D shapes and 3D objects
I can draw 2D shapes and make representations of 3D objects using an appropriate range of methods and efficient use of resources. MTH 2-16c

Benchmarks

- Uses digital technologies and mathematical instruments to draw 2D shapes and make representations of 3D objects, understanding that not all parts of the 3D object can be seen.

Mental Strategies	Skills	Possible Resources	Assessment
	I can use set of compasses to draw triangles I can use rulers and set squares to draw squares and rectangles I can use rulers and a set of compasses or computer packages to represent 3D objects	TJ Level C Ch 14 Ex 2 pgs 157-158 TJ Level D Ch 10 Ex 5 pgs 124-125 TJ Level E Ch 14 Ex2 pgs 172-173 TJ 2b Ch 5 Ex 1 Ex 2 Ex 3 pgs $42-47$	Write TJ Assessment Pack MTH 2-16c

Topic \& CfE Outcome - Angle, symmetry and transformation

I have investigated angles in the environment, and can discuss, describe and classify angles using appropriate mathematical vocabulary.
MTH 2-17a

Benchmarks

- Uses mathematical language including acute, obtuse, straight and reflex to describe and classify a range of angles identified within shapes in the environment.

Mental Strategies	Skills	Possible Resources	Assessment
Recall	I can identify a right angle and know it is equal to 90°	HAM Teaching Cards	Write
Acute $1^{\circ}-89^{\circ}$		SPM 2.5a	HAM Question Bank SPM 2.5a
Right 90°	I can identify a straight angle and know it is equal to 180°	TJ Level D Ch 8	Write
	I can identify an acute angle as being smaller than a right angle	Ex 5	TJ Level D Ch 8 Topic in a
Obtuse $91^{\circ}-179^{\circ}$		Ex 6 Ex 7 pgs $93-97$	Nutshell pgs 103-105 Q3-8
Right 180°	I can identify an obtuse angle as being larger than a right angle but smaller than a straight angle	TJ Level E Ch 12	$\frac{\text { Write }}{\text { TJ Level 2a Ch } 6 \text { The 3R's pgs } 60}$
Reflex $181^{\circ}-259^{\circ}$		Ex 1 pg 146	- 61 Q3-5
Full Turn 360°	I can identify a reflex angle as being larger than an obtuse angle but less than 360°	$\begin{aligned} & \text { TJ } 2 \mathrm{~b} \text { Ch } 5 \\ & \text { Ex } 4 \mathrm{pg} 48 \end{aligned}$	Write TJ Level 2 b Ch 5 The 3 R's pgs 49
Skills (mentally, with jottings and materials if needed)	Investigate the above angles in the environment		- 50 Q1, 2, 4, 5, 6 and 7
		H7 Teacher's Notes pgs 203-204	Write
	I can confidently discuss that complementary angles add to 90° and supplementary angles add to 180°		TJ Assessment Pack MTH 2-17a
		H7 Tbk pgs 93	
Use addition and subtraction facts to calculate missing angles	I know that vertically opposite angles are equal - I can compare the size of an angle with a right angle or straight line - I can use the words acute, obtuse, reflex and right angle to describe the angle between a pair of lines I have drawn - I can use the words acute, obtuse, reflex and right angle to describe the angles of a 2 D shape I have made or I am given		Do
			Ask children to write a shape challenge, for example, 'Draw a shape with a right angle' or
			'Draw a shape with an obtuse angle and two acute angles'. Collect their ideas. Read out one challenge - the class try to draw it and decide whether or not that challenge can be met. Take suggestions from the class and aim to reach consensus.
			Do Call out a type of angle choosing from acute, right, obtuse, straight line and reflex. Each child draws an example of the specified angle on their whiteboard and marks the angle.

Renfrewshire Council

Numeracy and Mathematics Progression and Support - Second Level Pathway 3

Topic \& CfE Outcome - Angle, symmetry and transformation

I can accurately measure and draw angles using appropriate equipment, applying my skills to problems in context. MTH 2-17b

Benchmarks

- Measures and draws a range of angles to within $\pm 2^{\circ}$
- Knows that complementary angles add up to 90° and supplementary angles add up to 180° and uses this knowledge to calculate missing angles.

Mental Strategies	Skills	Possible Resources	Assessment
Skills (mentally, with jottings and materials if needed) Add any pair of numbers, including crossing the 10 s and 100 boundary, e.g. $57+48$ Add 2 or 3 digit multiples of 10 , e.g. $70+110$	I can name angles using three letters I can measure angles to 360° accurately within 2 degrees I can draw angles to 360° accurately within $\mathbf{2}$ degrees - I can use a protractor to draw angles of a given size up to 180° - I can use a protractor to draw angles of a given size up to 360° - I can use my knowledge of right angles to check whether my drawn angle looks right - using my knowledge of angles I can calculate the size of a missing angle	HAM Teaching Cards SPM 2.5 c TJ Level D Ch 8 Ex 2 Ex 3 Ex 4 pgs $88-93$ TJ Level E Ch 12 Ex 2 Ex 3 pgs 147-150 TJ 2a Ch 6 Ex 2 Ex 3 Ex 4 pgs 53-57 TJ 2b Ch 5 Consolidation of Angles pg 41 Qu1-7 Ex 4 pg 48 H7 Teacher's Notes pgs 200-203 H7 Tbk pg 92	Write HAM Question Bank SPM 2.5c Write TJ Level D Ch 8 Topic in a Nutshell Qu 1-8 Write TJ Assessment Pack MTH 2-17b Do Children work in pairs. The first child says a size of angle for the other child to draw. They draw the angle and pass it back to their partner who measures it to check. They repeat, swapping roles. You may want to specify the numbers of degrees they can use (e.g. less than 180°, multiples of 10°, etc.) or you may want them to choose any size of angle to challenge each other.

Topic \& CfE Outcome - Angle, symmetry and transformation

Having investigated where, why and how scale is used and expressed, I can apply my understanding to interpret simple models, maps and plans.
MTH 2-17d

Benchmarks

- Interprets maps, models or plans with simple scales, for example, $1 \mathrm{~cm}: 2 \mathrm{~km}$.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Recite and recall all multiplication and division facts	I have investigated where scale is used in real life, i.e. ordinance survey maps, architects drawings I can calculate actual measurements using scale I can convert more complex scales, e.g. in map work - I have explored why scale is used and who might use it - I can use my sense of scale when representing objects in my drawings and model making - I have interpreted drawings, plans and maps which use different scales - I can create a drawing, plan or map which uses a scale I have been given - I can choose an appropriate scale and use it when creating a drawing, plan or map - I can use scale to create models, maps and plans	HAM Teaching Cards M 2.5 TJ Level E Ch 17 Ex 1 Ex 2 Ex 3 pgs 194-201 TJ 2a Ch 6 Ex 2 pgs 55-56 TJ 2b Ch 6 Ex 1 Ex 2 Ex 3 pgs 52-59 H7 Teacher's Notes pgs 150-152 H7 Tbk pgs 69-70	Write HAM Question Bank M 2.5 Write TJ Assessment Pack MTH 2-17d Do Specify a scale, for example, 1:5. Children draw any rectangle on cm squared paper (using whole centimetre dimensions) and label the length and width in cm . Children swap their rectangle with a partner and they scale up each other's rectangle on plain paper, using the specified scale. Do Each child writes a problem involving scale on a piece of paper. For example, 'A road on a map is 7 cm long. The scale is 1:5000. How long is the road?' Take a question at random and read it out. Ask children to suggest how to solve the problem and answer the question.

Topic \& CfE Outcome - Angle, symmetry and transformation

I can illustrate the lines of symmetry for a range of 2D shapes and apply my understanding to create and complete symmetrical pictures and patterns. MTH 2-19a

Benchmarks

- Identifies and illustrates line symmetry on a wide range of 2D shapes and applies this understanding to complete a range of symmetrical patterns, with and without the use of digital technologies.

Mental Strategies	Skills	Possible Resources	Assessment
	I can identify whether or not a shape has symmetry. I can create or complete more complex symmetrical patterns on squared paper including more complex patterns and designs, e.g. half squares, triangles etc. - I have explored dividing up triangles and quadrilaterals and other polygons and can discuss the results	TJ Level D Ch 2 Ex 1 Ex 2 pgs 26-31 TJ 2a Ch 2 $\text { Ex } 2 \text { Q2(i) - (k), } 5-8$ TJ 2b Ch 2 Consolidation of Symmetry pg 14 Ex 1 pgs 15-18 www.topmarks.co.uk and search line symmetry	Write TJ Level D Ch 2 Topic in a Nutshell Qu 4-5 Write TJ Assessment Pack MTH 2-19a Write TJ 2b Ch 2 The 3 R's pg 19 Make Provide children with small different coloured squares and ask them to create a symmetrical pattern. Change an aspect of the pattern by moving a square or squares and ask the child to fix the design to make it symmetrical.

Topic \& CfE Outcome - Data and analysis

Having discussed the variety of ways and range of media used to present data, I can interpret and draw conclusions from the information displayed, recognising that the presentation may be misleading. MNU 2-20a

Benchmarks

- Analyses, interprets and draws conclusions from a variety of data.
- Draws conclusions about the reliability of data taking into account, for example, the author, the audience, the scale and sample size used.

Mental Strategies	Skills	Possible Resources	Assessment
Recall mean/ average	Interpret	HAM Teaching Cards IH 2.7, IH 2.10	Write HAM Question Bank IH 2.7, IH
median - middle value of a list of ordered values	I can take information from a table, graph, pie chart, spreadsheet or database	I can communicate my findings	TJ Level D Ch 5

Say and Do

Tell children you are going to read out some statements. In pairs they should discuss whether or not each statement describes a possible use for a pie chart, and show if they agree by putting thumbs up or down. You could use a pie chart to:

- show the change in temperature from month to month
- compare the number of votes for different parties in an election
- show how a child spent their time during a day (e.g. sleeping, eating, watching TV, at school)

Topic \& CfE Outcome - Data and analysis

I have carried out investigations and surveys, devising and using a variety of methods to gather information and have worked with others to collate, organise and communicate the results in an appropriate way. MNU 2-20b

Benchmarks

- Devises ways of collecting data in the most suitable way for the given task.
- Collects, organises and displays data accurately in a variety of ways including through the use of digital technologies, for example, creating surveys, tables, bar graphs, line graphs, frequency tables, simple pie charts and spreadsheets.

Mental Strategies	Skills	Possible Resources	Assessment
	I can use a database to gather, filter and sort information I can use spreadsheets to gather, filter and sort information I can explore and design questionnaires to help answer questions ad solve problems - I can create spreadsheets, deciding what cells of information are required - I can show understanding of the need to be systematic when gathering information in order that the spreadsheet is complete - I can filter and sort the information held in a spreadsheet to find information - I can show that consideration has been given to who and how many people are needed for questioning in order to obtain answers needed - Having started a survey; decide whether there is a need to refine the questionnaire in order to obtain the best results - I can conduct a survey, collate results, make sense of the information gathered and decide what to do next	TJ 2b Ch 17 Consolidation of Statistics Qu 4 pg 157 H7 Teacher's Notes pgs 230-231, 240 241 H7 Tbk pgs 108, 115 116	Write TJ Assessment Pack MNU 2-20b

Topic \& CfE Outcome - Data and analysis

I can display data in a clear way using a suitable scale, by choosing appropriately from an extended range of tables, charts, diagrams and graphs, making effective use of technology. MTH 2-21a

Benchmarks

- Displays data appropriately making effective use of technology and chooses a suitable scale when creating graphs.

Mental Strategies	Skills	Possible Resources	Assessment
Skills (mentally, with jottings and materials if needed) Skip counting for intervals on a scale	Display I can create a bar graph or line graph with the following: - Title - $\quad x$ and y axes labelled - Constant on x axis - Variable with appropriate scale on y axis - Equal spacing between bars When provided with a template I can display data as a pie chart - I can talk about how line graphs are useful in recording measurements over time - I can discuss the features of a line graph and find out information from it - I understand and can talk about the difference between discrete and continuous data - When making a line graph, I can choose an appropriate scale for both axes and plot measurements - I have explored how joining the points of measurement allows me to talk about what might be happening between them	HAM Teaching Cards IH 2.8, IH 2.11 TJ Level E Ch 9 Ex 3 pgs 111-112 TJ 2a Ch 18 Ex 3 Qu 7-10 pg 182 TJ 2b Ch 17 Consolidation of Statistics Qu 7 \& 10 pgs 158 \& 159 H7 Teacher's Notes pgs 235-236 H7 Tbk pg 111 Linked to MNU 2-20a \& MNU 2-20b	Write HAM Question Bank IH 2.8, IH 2.11 Write TJ Assessment Pack MTH 2-21a Make Create a table of data which could be represented in a line graph (e.g. changes in height of a plant or person, temperature over hours, etc.). Children work in small groups to plot this info on a blank line graph template, then join the points using straight lines to create a line graph. The context of the data should be relevant to the children, i.e. savings, school dinner uptake over a week etc. Make and Do Give small groups of children a copy of a line graph template. Explain that you are going to tell a story and they have to represent what is happening in their line graph. Choose any context where things will change over time (e.g. a boy growing a plant, a snowman being built then melting, someone losing weight in a diet club, a footballer practising and getting better at scoring goals, etc.). They draw the graph to show the trends within the story and label the axes, including scales, appropriately. As an extra challenge you could ask groups to write a short story which other groups could turn into a graph.

Topic \& CfE Outcome - Ideas of chance and uncertainty

I can conduct simple experiments involving chance and communicate my predictions and findings using the vocabulary of probability.

MNU 2-22a

Benchmarks

- Uses the language of probability accurately to describe the likelihood of simple events occurring, for example equal chance; fifty-fifty; one in two, two in three; percentage chance; and $\frac{1}{6}$
- Plans and carries out simple experiments involving chance with repeated trials, for example, 'what is the probability of throwing a six if you throw a die fifty times?'.
- Uses data to predict the outcome of a simple experiment.

Mental Strategies	Skills	Possible Resources	Assessment
Recall	I can talk about how likely or unlikely it is that an event will happen	HAM Teaching Cards	$\underline{\text { Write }}$
Recall and practise times tables		IH 2.9	HAM Question Bank IH 2.9
	I know that probability is a measure of likelihood	TJ 2b Ch 18	Write
Recall types of numbers: even, odd, factors, multiples and squares	- I can investigate when an outcome would have a good chance, poor chance or even chance of happening - I can place the likelihood of an event on a probability scale numbered 0-1	Ex 2 pg 161-162	TJ 2b Ch18 The 3 R's pg 163
		H7 Teacher's Notes	Write
		pgs 245-249	TJ Assessment Pack MNU 2-22a
Skills (mentally, with jottings and materials if needed)	- I have explored how to systematically create a list of all possible combinations and outcomes - I can represent the likelihood of a particular outcome numerically - I can discuss why this may be useful in everyday situations	H7 Tbk pgs 118-120	Say and Do
			Draw a simple labelled probability scale on the board.
			Point to a place on the scale and children work in pairs and think
Relate probabilities to fractions e.g. if the probability is 1 in 4 then it can also be written as $\frac{1}{4}$			of an event which would sit roughly around that position.
			Pairs share their suggestions with each other. Take some
			suggestions and add them to
			the line. Repeat for different
			positions.
			Do
			Show children that you are putting 10 cubes into a bag: 1 is
			blue, 5 are green, 2 are yellow and 2 are pink. Ask children to
			write on their whiteboard the
			chance of randomly picking happening the following:
			- a blue cube
			- a green cube
			- a pink or yellow cube
			- a cube that is not pink.
			If they can, they write the probability as a fraction and a
			percentage. Discuss any
			differences in how children
			have written their answers.

Strategies

By the END of Second Level, Learners should understand when to use and be able to apply the following strategies. Knowledge of, understanding and application of these strategies should be built across the level.

* Emphasise the importance of using mental maths skills and recall in a variety of contexts, e.g. Money
* Explore and use correctly a variety of mathematical language related to addition, subtraction, multiplication and division

Addition and Subtraction

* Emphasise the use of estimation and rounding in calculations
* Count on or back in hundreds, tens and ones. Progress to tenths then hundredths
* Subtract by counting up from the smaller to the larger number
* Reordering $-25+3+15+8=25+15+8+3$
* Partitioning strategies:
- 47+58 - add tens and ones separately then recombine. Progress to hundreds
-91-35 - subtract tens then ones. Progress to hundreds (Subtract in Chunks)
-56+29 - add or subtract a multiple of 10 and adjust (Making Tens)
- 38+37-double and adjust
* $4 \cdot 3+2 \cdot 9=4 \cdot 3+3-0 \cdot 1-$ add or subtract a whole number and adjust
- How long from 3.45pm to 4.20 pm ? Count on and back in minutes and hours, bridging through 60 (analogue and digital times, progressing to 12 hour and 24 hour clock)
- Use knowledge of place value and related calculations, e.g. 140+150=290 using
$14+15=29$. Progressing to decimals $-6 \cdot 3-4 \cdot 8$ using $63-48,0 \cdot 68+0 \cdot 43$ using $68+43$

Multiplication and Division

* Emphasise the use of estimation and rounding in calculations
* $32 \times 5,14 \times 20$ - Form an equivalent calculation, e.g. to multiply by 5 - multiply by 10 then halve, to multiply by 20 - double then multiply by 10 or multiply by 10 then double.
* $32 \times 50,48 \times 25$, e.g. to multiply by 50 - multiply by 100 then halve. To multiply by 25 multiply by 100 , then halve and halve again
* When dividing by 50, form an equivalent calculation e.g. divide by 100 then double. To divide by 25 - divide by 100 then multiply by 4
* $\mathbf{4 . 3 \times 1 0 , 6 7 3 \div 1 0 0 - u s e ~ u n d e r s t a n d i n g ~ t h a t ~ w h e n ~ a ~ n u m b e r ~ i s ~ m u l t i p l i e d ~ o r ~ d i v i d e d ~}$ by 10 or 100 , its digits move one or two places to the left or the right relative to the decimal point, and zero is used as a place holder
* When calculating with multiples of 10, use knowledge of multiplication and division facts and understanding of place value e.g. 60×30
* Partitioning method for division $-98 \div 7=(70+28) \div 7=10+4=14$
* Use knowledge of equivalence between fractions and percentages, e.g. to find 50\%
($\frac{1}{2}$), 25\% ($\frac{1}{4}$), 10\% ($\frac{1}{10}$)
* Scale up or down using multiplication and division - e.g. if three oranges cost 24 p : one orange costs $24 \div 3=8 p$ then four oranges cost $8 \times 4=32 p$

