∞
 Renfrewshire
 Council

Progression and Support Document First Level - Pathway 3

Renfrewshire Council
 Numeracy and Mathematics Progression and Support - First Level Pathway 3

Rationale

This series of Progression and Support documents, including Pathways and Bundling Advice provides a progression of skills through a level. Regular reinforcement of concepts and promotion of Numeracy Across Learning is encouraged. The Pathways are not intended to be prescriptive or restrictive. Practitioners should identify when opportunities occur within contexts across the curriculum and plan for this to demonstrate relevance. The overall aim is to provide a shared standard of expectations and to ensure progression and depth within planning.

The Progression and Support documents focus on the skills required to achieve concepts within an outcome and detail the mental agility strategies associated with the learning within each experience and outcome. Suggestions for formative assessment and summative assessment are provided and some possible resources are listed, but this list is by no means exhaustive.

It is hoped that these Progression and Support documents provide a clear framework and the necessary support so that practitioners can feel confident in planning engaging, well-paced and suitably challenging learning experiences, which involve a variety of methodologies. Ultimately our goal is to raise attainment for all our learners and these documents are just one part of that journey. All our learners should be given opportunities that will allow them to become confident and numerate, build their skills in a variety of contexts and allow them to reach their own targeted positive destinations.

Many of the documents consulted in the process of creating the Support and Progression documents can be found on the Education Scotland website. These include:

- Numeracy and Mathematics: Experiences and Outcomes
- Mathematics: Principles and Practice
- Numeracy Across Learning: Principles and Practice
- National Numeracy and Mathematics Progression Framework
- Numeracy and Mathematics Benchmarks
- CfE Statement for Practitioners

In addition to this, current planning documents that are being used across the authority, progression documents from other local authorities across Scotland and a variety of resources were consulted.

Bundling Advice

There are many possible ways to bundle Numeracy and Mathematics Experiences and Outcomes depending on the skills that are being explored and the contexts for learning that are relevant to the children that the learning is being planned for.

The following is one example of how to bundle the Experiences and Outcomes according to the skills in this pathway. Choosing bundles of outcomes based on relevant contexts for learning is always the best practice and should be explored whenever possible. It can also be appropriate to bundle Numeracy and Mathematics across curricular areas if there is a clear opportunity to do so. There is exemplification of one of these bundles for further clarification and to demonstrate the learning opportunities that link these particular Experiences and Outcomes as a bundle in this instance.

These bundles can be approached in whichever order is most appropriate. Some of the Experiences and Outcomes have not been bundled as links between outcomes were too tenuous. Bundling without clear and strong links is not beneficial and it may be the case that some Experiences and Outcomes are better taught discretely.

There should be an element of number work/manipulating number every day, regardless of any other Numeracy and Mathematics learning that is planned for. This will provide regular opportunities to reinforce and challenge learning across the key numeracy outcomes which are indicated in bold below. At the beginning of a new pathway, the regular number work/manipulation of number will be based on reinforcement of the skills from the previous pathway. As the learning progresses, introduction of learning to develop the new skills within the current pathway should be introduced and progressed.

Bundling of Experiences and Outcomes First Level Pathway 3 Estimation and rounding MNU 1-01a Number and number processes MNU 1-03a Money MNU 1- 09a \& MNU 1-09b Expression and equations MTH 1-15b Number and number processes MNU 1-02a Expression and equations MTH 1-15a Mathematics - its impact on the world, past, present \& future MTH 1-12a Patterns \& relationships MTH 1-13b Properties of 2D shapes \& 3D objects MTH 1-16a Properties of 2D shapes \& 3D objects MTH 1-16b Pattern \& relationships MTH 1-13a Angle, symmetry \& transformation MTH 1-19a Measurement MNU 1-11a (length, weight and volume \& capacity) Measurement MNU 1-11b Angle, symmetry \& transformation MTH 1-17a Angle, symmetry \& transformation MTH 1-18a Fractions MNU 1-07a \& MNU 1-07b Fractions MTH 1-07c Time MNU 1-10a Time MNU 1-10b	
Time MNU 1-10c	
Data \& analysis MNU 1-20a \& 1-20b, MTH 1-21a	
	Can be explored and reinforced effectively in P.E. lessons.
Ideas of chance \& uncertainty MNU 1-22a	Can be explored and reinforced effectively through contexts, i.e. class novels - Venn diagram to compare words to compare characters. Also can alternatively bundle with MTH 1-16a to explore shape properties to use as data set or with Patterns \& relationships MTH 1-13b where patterns are explored and data analysed, i.e. organising numbers based on multiples facts.

As stated above, this is only one possible way to bundle the Experiences and Outcomes for this pathway. Different contexts for learning across the curriculum will raise opportunities to bundle in different ways. Consideration should be given to bundling in relevant contexts and to using opportunities across the curriculum to reinforce Numeracy and Mathematics skills.

Bundling within Numeracy and Mathematics

The following explains why these experiences and outcomes bundle sensibly.

Bundle	Reasons bundle was chosen
Number and number processes MNU 1-02a	In Number and number processes MNU 1-02a, numbers to 1000 in terms of place value. This includes Counting, Ordering, Reading and Writing Numbers. Naturally, in the process exploring these elements, numbers and Expression and equations MTH 1-15a
	t-15 values will be compared. This is where Expression and equations MTH numbers
	As stated previously, there are numerous ways to bundle the experiences and outcomes, this is only one way. If there is a particular context being symbols to show comparison of explored in class, i.e. social studies, science etc., it may be sensible to bundle differently.

Bundling Across the Curriculum

The following is an example of bundling experiences and outcomes from across the curriculum, within a context.

Bundle and Context for Learning	Reasons bundle was chosen
Context is a class shared story - 'Gigantosaurus' by Jonny Duddle Using what I know about the features of different types of texts, I can find, select, sort and use information for a specific purpose. LIT 1-14a Inspired by a range of stimuli, I can express and communicate my ideas, thoughts and feelings through activities within art and design. EXA 1-05a	Naturally when discussing a text in class, characters or settings will be discussed and compared. This is an opportunity to explore sorting as you compare words to describe two different characters for example, using a Venn Diagram. Depending on the text, other sorting activities could take place, i.e. 'Gigantosaurus' by Jonny Duddle - providing words to describe the characters Bonehead, Tiny, Finn and Bill then sorting these using a Venn or Carroll Diagram MNU 1-20a/b. If the children are particularly interested in different dinosaur species, they could be given a range to sort and compare, at first by their own criteria, then by given criteria. Using Aiden Chamber's Three Sharings, discuss the text then collate information based on the discussion which can then be displayed in a variety of ways, i.e. block graph of feelings about the text - What words can we use to describe how we felt when Bonehead kept crying wolf?, tally of connections to own life - When have you felt like this before? MNU 1-20a/b \& MTH 1-21a if technologies are used. As dinosaur footprints feature largely in the book illustrations, the children could become illustrators and design their own dinosaur footprints with media of their own choice. The footprint could then be explored in a variety of ways, i.e. finding the area, comparing to other footprints, ordering sizes, measuring etc. MNU 1-11a \& MNU 1-11b These are a few examples of how to plan for Numeracy and Mathematics across the curriculum by bundling relevant outcomes. As you can see, many of the discussion points would have taken place anyway. Considering the above experiences and outcomes together, extends the learning and utilises Numeracy and Mathematics in a meaningful way.

Money	Fractions	Measurement	Number \& Number Processes	Pattern \& Relationships	Measurement	Angle, symmetry \& transformation	Data \& Analysis	Ideas of chance \& uncertainty
MNU 1-09a MNU 1-09b	MNU 1-07a MNU 1-07b	MNU 1-11a Weight	MNU 1-03a Multiply \& Divide	MTH 1-13b	MNU 1-11a Length	MTH 1-19a	MNU 1-20b	MNU 1-22a

| Angle, symmetry
 \& transformation | Angle, symmetry
 \& transformation | Measurement |
 Equations | Fractions | Time | Time |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MTH 1-17a | MTH 1-18a | MNU 1-11a
 Capacity \& Volume | MTH 1-15b | MTH 1-07c | MNU 1-10a | MNU 1-10c |

Data \& Analysis

MTH 1-21a

[^0]The following annotation explains how the Progression and Support Documents can be used to support planning.

Topic \& CfE Outcome - Estimating and Rounding

I can share ideas with others to develop ways of estimating the answer to a calculation or problem, work out the actual answer, then check my solution by comparing it with the estimate. MNU 1-01a

Benchmarks

- Uses strategies to estimate an answer to a calculation or problem, for example, doubling and rounding.
- Rounds whole numbers to the nearest 10 and 100 and uses this routinely to estimate and check the reasonableness of a solution.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Addition and Subtraction facts for all numbers to 20 , i.e. $9+8,17-9$, drawing on knowledge of inverse operations Know which is the hundreds, tens and ones digits in a three digit number Skills (mentally, with jottings and materials if needed) Use an empty number line to find which 10 or 100 a number is closest to	I can use rounding to the nearest 10 to estimate answers then check against accurate calculations I can round numbers up or down to the nearest 100, up to 1000 I can estimate where a number would lie on a blank number line, up to 1000 I have explored why estimating and rounding is an important skill in real-life - I can discuss and compare ideas of estimation with others - I can explain what rounding to the nearest 100 means - I can use a wide range of appropriate vocabulary to explain and compare amounts - more than, less than, least, most, accurate, approximate etc. - I can decide whether to round up or down to the nearest 100 by looking at the tens digit - I can explain to others the rule for rounding up or down to the nearest 100 - I know that when rounding to the nearest 100 , if the tens digit is $4(40)$ or less I should round down to the previous multiple of 100 and if it is $5(50)$ or above I should round up to the next multiple of 100 - I can round to the nearest 100 for a range of different numbers - I can round 2 and 3 digit numbers to the nearest 10 - I can round 3 digit numbers to the nearest 100 - I can give examples of numbers which are rounded to a given multiple of a 100	HAM Teaching Card NP1.9b H4 Teacher's Notes pgs 44-46 H4 Number Wbk pgs 7-8 TJ 1b Ch 1 Ex 2 Ex 3pgs 4-6 TJ Level C Ch 5 Ex 5 pgs 60-65 S.E.A.L. Approaches as per Facile planner	Write HAM Question Bank NP1.9b Write TJ 1b Ch 1 The 3 R's pg 7 Do Provide the children with a selection of catalogue pages, menus with prices and/or access to such information online. Children should select some of the items to create a poster with but should round to the nearest whole f. An alternative is to give the children a whole $£$ total on a piece of paper and they must find items that round to that whole $£$. They could record this by cutting out the items then writing the whole $£$ total beside it or by drawing the items they have found. The 100p in a $£$ fact is reinforced with this task. Discuss why many items are priced $£ 7.99, £ 2.99$, etc. Do Ask children to measure a variety of items around the room by estimating its size then checking it with an appropriate measuring instrument that they have selected. Discuss the appropriateness of the instrument depending on what has been selected by the child. Ask the children to round to the nearest metre or nearest 10 cm depending on the items chosen.

Topic \& CfE Outcome - Number and Number Processes

I have investigated how whole numbers are constructed, can understand the importance of zero within the system and can use my knowledge to explain the link between a digit, its place and its value. MNU 1-02a

Benchmarks

- Reads, writes, orders and recites whole numbers to 1000 , starting from any number in the sequence.
- Demonstrates understanding of zero as a placeholder in whole numbers to 1000.
- Uses correct mathematical vocabulary when discussing the four operations including, subtract, add, sum of, total, multiply, product, divide and shared equally.
- Identifies the value of each digit in a whole number with three digits, for example, $867=800+60+7$.
- Counts forwards and backwards in $2 \mathrm{~s}, 5 \mathrm{~s}, 10$ s and 100 s .

Mental Strategies	Skills	Possible Resources	Assessment
Recall Addition and Subtraction facts for all numbers to 20 , i.e. $9+8,17-9$, drawing on knowledge of inverse operations	For whole numbers to 1000 children should be able to - Count - Order - Read - Write - Place Value	HAM Teaching Card NP1.4c , NP1.6b, NP1.7c H5 Teacher's Notes pgs 35-39 H5 Tbk pgs 7-8	Write HAM Question Bank NP1.4c, NP1.6b, NP1.7c Say State a number to begin on and tell the children whether they are counting backwards or forwards, i.e. Starting with 230,
Sums and differences of multiples of 10 , within 1000, i.e. $50+$ 80, 120-90	accurately count a group of objects and know if an answer makes sense I can use numbers to describe the order of items - ordinal numbers	H5 Wbk pgs 2-3 TJ 1b Ch 1 Revision of Whole Numbers Ex 1 pgs 1-3	count on in steps of 100 or Starting 700, count back in steps of 10 . Children become counting ninjas and take their turn to state the next number in the sequence when it is their
Pairs of two-digit numbers with a total of 100 , i.e. $32+68 \text { or }$ $32+\square=100$	I can discuss the digits in a number, their position, their value and know that zero is important as a place holder - thousands, hundreds, tens and ones (partitioning) I can count on and back in steps of 1,10 and 100 and can describe how this changes the digits in a number	http://www.mathsisf un.com/placevalue.html http://nrich.maths.or	turn. They can create a ninja action to perform as they count Children continue calling out in sequence until they reach the end of the line when the numbers 'travel' back along the
Number pairs with multiples of 5 with totals to 100, i.e. $65+35$	I can compare numbers and put them in order to 1000 I can identify numbers before/after/in-between to 1000	g/152 http://www.mathsisf un.com/numbers/ord ering-game.php	line, this time counting in the other direction. Discuss which digits stay the same and which digits change as they count on or back.
Recall numbers before and after to 1000	I can identify numbers more than and less than a particular number up to 1000 , i.e. What is 100 more than 530? I can write number names in words to 1000	S.E.A.L. Approaches as per Facile planner	Do The children work in groups of three for this task. Ask each
(mentally, with jottings and materials if needed)	I can use ordinal numbers to $100^{\text {th }}$ and beyond - I can count on and back in sequence from a given number without missing any number to 1000		whiteboard. This will be the number they keep for this round of questions. The children must arrange
Count on and back from a single digit number in 3 s and 4 s within 100 , i.e. start at 2 and count in threes	- I can say the ordinal numbers and write them in digits and words - I can talk about the digits which make up a number and work out if they stand for a group of ones, tens, hundreds or thousands - I can show a number on a number line and talk about its position, i.e. 104 is 100 and 4 more		themselves based on the criterion you call out. You could turn it into a game by giving points for correct answers. Use the language of comparison and ordering in the criteria, e.g. Arrange yourselves into a
Count on and back in $1 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s to 1000 from any number	- On seeing a number written in words, I can read it out correctly and work out the value of each digit in its position (thousands, hundreds, tens and ones) - On hearing a number read aloud, I can work out how to write the number in digits (thousands, hundreds, tens and ones)		number larger/smaller than 632, a number between 250 and 350 , etc. If a group cannot make a number they do not get a point. If however they could
Partition numbers, i.e. know that 276 is 2 hundreds, 7 tens and 6 ones	- I can describe what happens to the different digits in a number when adding on in ones, tens and hundreds - I can split a number and say how many ones, tens, hundreds and thousands there are - I can use the terminology thousands, hundreds, tens and ones		have made a number but did not identify this, open it up to another group to use the numbers to gain a bonus point.

Put 3 digit numbers in order by looking at place value	correctly and identify constituent parts of numbers - I can compare and order numbers by looking at the digit with the highest value first and know that this is the digit in the furthest left position of the number - When there are more than two numbers, I can place two in order then compare the third number with them to see if it goes steps of 100 from any number up to 1000
before, after or between them - I can write the number names in words to 1000 less within numbers to 1000	
Write number names for numbers up 1000	 Continue a sequence of 3 digit and 4 digit numbers

Topic \& CfE Outcome - Numbers and Number Processes
I can use addition, subtraction, multiplication and division when solving problems, making best use of the mental strategies and written skills I have developed. MNU 1-03a

Benchmarks

- Demonstrates understanding of the commutative law, for example, $6+3=3+6$ or $2 \times 4=4 \times 2$.
- Solves addition and subtraction problems with three digit whole numbers.
- Adds and subtracts multiples of 10 or 100 to or from any whole number to 1000.
- Solves two step problems.

Mental Strategies

Recall
Addition and
Subtraction facts for all numbers to 20 ,
i.e.
$9+8$, 17-9, drawing
on inverse
operations

Sums and differences
of multiples of 10 , within 1000, i.e.
$50+80$,
120-90

Pairs of two-digit numbers with a total of 100 , i.e.
$32+68$ or
$32+\square=100$

Number pairs with multiples of 5 with totals to 100, i.e. $65+35$

Complementary addition - Number pairs with two digit numbers to make the next multiple of 100, i.e.
$520+\Delta=600$

Addition doubles for multiples of 10 with totals up to 1000 , i.e. $400+400=800$

Ordinal numbers to $100^{\text {th }}$ and language of comparison before, after etc.

Know numbers before, after and between from any number to 1000

Identify the place value of each digit in a number

Skills
I have explored adding and subtracting by using concrete materials and pictorial representations, i.e. ten frames, rekenreks, number lines 100 square, drawings etc.

I can count on and back using a variety of different strategies

I can confidently add and subtract mentally for numbers 0 100 , using a variety of strategies

I can justify my choice of strategy, aiming to use the most effective method for each calculation

I can add and subtract mentally for 1 digit numbers to or from whole numbers with up to 3 digits

I can use written format for numbers with up to 2 digits added to or subtracted from 3 digits

- I can confidently use and apply extended addition vocabulary confidently
- I can estimate what I think an answer is going to be near and can check it after to see if my answer is sensible
- I can select and use the most appropriate strategy for solving addition and subtraction problems
- I can solve a calculation using more than one strategy and can talk about which one was easiest and quickest
- I can use number facts and a variety of mental models to work out addition and subtraction calculations; at least 2-digit numbers and pairs of multiples of 10,100 and 1000
- In written format I can add and subtract horizontally and vertically, whole 2 and 3 digit numbers to whole 3 digit numbers within 1000 (no bridging through 10)
- In written format I can add and subtract horizontally and vertically, whole 2 and 3 digit numbers to/from whole 3 digit using decomposition and partitioning within 1000, including bridging
- I can create a complete number sequence by repeatedly adding or subtracting a number; in multiples of 10 and other helpful numbers
- I can use pictures, jottings and models to work out and record my addition and subtraction calculations
- I can apply all learnt skills in word problems

Written algorithms for addition and subtraction should not be explored until all appropriate strategies have been thoroughly explored and children are comfortable in selecting these strategies for completing calculations. If written algorithms are taught too soon, the learner will rely on the process they have learned rather than gaining an understanding of what is happening when they add or subtract. Our aim is to foster conceptual understanding instead of learning of procedures without understanding.

Possib

Add and Subtract
HAM Teaching Cards
AS1.4c, AS1.8c,
AS1.8d, AS1.9b,
AS1.10b, AS1.11

Addition

H4 Teacher's Notes
pgs 48-60
H4 Tbk pgs 7-10
TJ 1a Ch 5
Ex 3
Ex 4
Ex 5
Ex 6
Ex 7 pgs 51-59
Subtraction
H4 Teacher's Notes
pgs 64-79
H4 Tbk pgs 11-17

H4 Wbk pg 9
TJ 1a Ch 7
Ex 3 pg 72-73
TJ 1a Ch 9
Ex 3
Ex 4
Ex 5 pgs $85-88$
http://www.mathsisf
un.com/worksheets/p
rint.php?w=1755\&|D=
15663\&OL=y
http://www.mathsisf un.com/worksheets/p rint.php?w=34642\&ID $=27204 \& O L=y$
S.E.A.L. Approaches as per Facile planner

Assessment

Write
HAM Question Bank AS1.8c, AS
1.8d, AS 1.9b , AS1.10b

Write

TJ 1a Ch 5 The 3 R's pg 61

Write

TJ 1a Ch 7 The 3 R's pg 74

Write

TJ 1a Ch 9 The 3 R's pg 89

Say

Carry out a 'Number Talk' focussing on the strategies within the pathway. Do this across the week but focus in on pre-set groups of children for assessment each day to ensure that you can assess them in a manageable way.

Do and Say

On the board write calculations which involve adding two 2digit numbers. Children show the answer using number fans. They can compare their answers and discuss their strategies with each other. Allow time for the children to talk about their strategies as this will show if they can demonstrate understanding. Extend to adding 2 and 3 digit numbers if appropriate.

720-50
 Making Tens -

Add or subtract near
tens to or from a two
or three digit
number within 1000,
e.g.
$16+19$ as
$16+20-1$,
133-111 as
133-110-1
Add near doubles within totals of 1000, e.g.
$130+140$,
$390+400$
Add two digit
numbers to three digit numbers, i.e. $123+22$, then bridging the 100 s boundary, i.e.
$227+85$
Use knowledge of place value to partition numbers for addition and subtraction, i.e.
$244+27=$
$200+40+20+7+4$
Chunking - Add or subtract in chunks of friendly numbers, i.e.
$660+43=$
$660+40+3$
An empty number line can be used to visualise this

Rounding and

adjusting - in addition and subtraction round one of the numbers to the nearest 10 then deal with the second number. Remember to adjust at the end, i.e.
$340+18=$
$340+20-2$

Topic \& CfE Outcome - Numbers and Number Processes

I can use addition, subtraction, multiplication and division when solving problems, making best use of the mental strategies and written skills I have developed. MNU 1-03a continued

Benchmarks

- Applies strategies to determine multiplication facts, for example, repeated addition, grouping, arrays and multiplication facts.
- Applies strategies to determine division facts, for example, repeated subtraction, equal groups, sharing equally, arrays and multiplication facts.
- Uses multiplication and division facts to solve problems within the number range 0 to 1000.
- Multiplies and divides whole numbers by 10 and 100 (whole number answers only).
- Applies knowledge of inverse operations (addition and subtraction; multiplication and division).
- Solves two step problems.

Mental Strategies
Recall
Multiplication facts
$2,3,4,5$ and 10
times tables and
associated division
facts. Build up to 6,
7,8 and 9 after initial
teaching

Fact families for multiplication/divisio
n, i.e.
$2 \times 3=6$
$3 \times 2=6$
$6 \div 2=3$
$6 \div 3=2$

Doubles of multiples of 10 and 100 and their corresponding
halves, i.e.
Double 90
Recall whether a number will be divisible by two by considering whether it is even or odd. Look at units digit to decide

Odd and even
numbers to 1000

Skills

(mentally, with jottings and
materials if needed)
Double any multiple of 5 up to 100, i.e. 75

Halve any multiple of 10 up to 200, i.e. halve 170
Multiply one digit number or two digit numbers by 10 or 100, i.e.
7×100,
46×10,
54×100

Skills
I have had opportunities to explore concrete materials and pictorial representations in relation to grouping and sharing, building the concepts of multiplying and dividing

I can count in multiples using different strategies including using arrays as a visual representation

I can share different quantities using a variety of strategies

I can multiply mentally by $6,7,8$ and 9 times tables

I can multiply by 100 and multiples of 10

I can use the written format for multiplying 2-digit numbers by a single digit

I can divide 2-digit numbers with remainders (by grouping)
I can use multiplication and division in real-life contexts

- I can use and apply extended multiplication vocabulary
- I can put equal groups into an array as a means to visualise the multiplication
- I can compare arrays and know which are the same, i.e. 3 rows of 4 and 4 rows of 3
- I can count in $9 \mathrm{~s}, 8 \mathrm{~s}, 7 \mathrm{~s}$, and 6 s , to form the sequence for the $9,8,7$ and 6 times tables
- I can recall multiplication and division facts for 6, 7, 8 and 9
times tables and I am becoming increasingly confident
- I can find and discuss patterns within and between timestables
- I can recall multiplication and division facts for all tables- 2, 3, $4,5,6,7,8,9$ and 10
- Using my knowledge of table facts and multiplying by ten, I can create new multiplication facts, e.g. ($3 \times 4=12$ so $30 \times 4=120$ so $30 \times 40=1200$)
- Using my knowledge of table facts and multiplying by a hundred, I can create new multiplication facts, e.g. ($3 \times 4=12$ so $300 \times 4=1200$)
- I can double any 2-digit number by splitting it into tens and ones (e.g. $24 \times 2=20 \times 2$ and 4×2)
- In written format (algorithm) I can multiply 2 and 3 digit numbers by a single digit
- I can use and apply extended division vocabulary
- I know what the term remainder means
- In written format (algorithm) I can divide 2 digit numbers mentally by a single digit (with and without remainders) - I can select and use the most appropriate strategy for solving multiplication and division problems.
- I can use a calculator to solve multiplication and division problems
- I can multiply horizontally and vertically using times table facts - I can lay out calculations correctly on squared paper

Assessment

Multiply and Divide Write
HAM Question Bank 1.7c, MD
1.9 a \& b, MD 1.10

Say

Set the timestable to be practised. Children stand and as they take their turn to call out the next station in the sequence they can perform their Counting Ninja pose. Children continue calling out in sequence until they reach the end of the line. Repeat this for a range of different starting numbers. Count backwards with $2,3,4,5$ and 10 timestables.

Do

Give the children a number and ask them to create arrays for that total. It is appropriate to provide counters or cubes for the children to act this out.

Do
Give the children a number and ask them to build multiplication and division facts around it, i.e. 20 is the number so:
$4 \times 5=20$
$5 \times 4=20$
$20 \div 4=5$
$20 \div 5=4$

Numeracy and Mathematics Progression and Support - First Level Pathway 3

Find the total
number of objects
when they are
organised into
groups of $2,3,4,5$ or
10 (build up to
groups of $6,7,8$ and
9 after initial
teaching)
Find unit fractions of
numbers and
quantities, e.g.
$\frac{1}{2}$ of $20, \frac{1}{4}$ of 16 using
known table facts
Partitioning in
multiplication -
multiply the tens,
multiply the ones
then add, i.e.
$12 \times 5=$
$(10 \times 5)+(2 \times 5)$
Divide by grouping
and sharing

- I can apply all learnt skills in word problems

Written algorithms for multiplication and division should not be explored until all appropriate mental strategies have been thoroughly explored and children are comfortable in selecting these strategies for completing calculations. If written algorithms are taught too soon, the learner will rely on the process they have learned rather than gaining an understanding of what is happening when they multiply or divide. Our aim is to foster conceptual understanding instead of learning of procedures without understanding.

Important Reminder

* Do not teach that when multiplying by 10 "add a zero to the end" as is stated in some textbooks as this shortcut does not develop conceptual understanding of what happens when a number is multiplied by 10 . Teach that when a number is multiplied by 10 , the number becomes ten times larger so each digit moves one column to the left with zero being inserted into the now vacant ones column as a place holder if needed.
* Similarly, do not teach that when dividing by 10 "simply remove a zero" as stated in some textbooks as this shortcut does not develop conceptual understanding and can indeed cause greater confusion when the whole number being divided does not end in a zero or later in Second Level when decimals are being divided by 10 . Teach that when a number is divided by 10 , the number becomes ten times smaller so each digit moves one column to the right.

Apply similar methodology to teaching multiplication and division by 100.

Topic \& CfE Outcome - Fractions, decimal fractions and percentages

Having explored fractions by taking part in practical activities, I can show my understanding of:

- how a single item can be shared equally
- the notation and vocabulary associated with fractions
- where simple fractions lie on the number line. MNU 1-07a and

Through exploring how groups of items can be shared equally, I can find a fraction of an amount by applying my knowledge of division. MNU 1-07b

Benchmarks

- Explains what a fraction is using concrete materials, pictorial representations and appropriate mathematical vocabulary.
- Demonstrates understanding that the greater the number of equal parts, the smaller the size of each share.
- Uses the correct notation for common fractions to tenths, for example, $\frac{1}{2}, \frac{2}{3}$ and $\frac{5}{8}$
- Explains the role of the numerator and denominator.
- Uses known multiplication and division facts and other strategies to find unit fractions of whole numbers, for example, $\frac{1}{2}$ or $\frac{1}{4}$

Mental Strategies
Recall Understand that a single item can be shared into equal parts and each part is a fraction

Skills

(mentally, with jottings and materials if needed)

Find unit fractions of numbers and quantities, e.g.
$\frac{1}{2}$ of $20, \frac{1}{4}$ of 16 using known table facts

Order fractions with the same denominator using a number line

Skills	Possible Resources
I have used a variety of materials to explore how whole items and groups of items can be shared equally	HAM Teaching Cards F 1.3b, 1.4b
I can explain the what the denominator and the numerator represent in terms of shares of a whole thing	H4 Teacher's Notes pgs 154-165
I can describe and record tenths in a variety of different ways and locate them on a number line	H4 Wbk pgs 23-28
I can describe and record fifths in a variety of different ways	H4 Tbk pgs 61-62
and locate them on a number line	TJ 1b Ch 16
I can work with whole numbers and fractions together	Ex 1 pgs 185-187

I can work with whole numbers and fractions together
I can compare the size of different fractions and understand where they lie on a-1 number line

I can identify fractions to tenths

Please ensure that children are given the opportunity to split shapes into fractional parts for themselves as this builds a better conceptual understanding of fractional parts. Always being given pre-divided shapes limits the ability to visualise where the shapes could split equally

- I can find a tenth of a number of objects by sharing into 10 equal pieces
- I can use place value and number facts to find a tenth of a number, e.g. links between HTO, column value, adding, doubling, multiplying
- I can demonstrate with knowledge and understanding the place that a tenth has on the number line
- I can count in tenths and record this on a number line
- I can use knowledge and understanding of number facts to find a fifth of a number
- I can show that one fifth is the same as 2 tenths
- I can demonstrate and understand the place that a fifth has on the number line
- I can count in fifths and record this on a number line
- I recognise that 1 fifth and 2 tenths, (2 fifths, 4 tenths etc) are the same place on a number line
- I know that the numerator is the top digit in a fraction
- I know that the denominator is the bottom digit in a fraction

Assessmen
Write
TJ Assessment Pack MNU 1-07a
\& 1-07b

Write

HAM Question Bank F 1.3b, 1.4b

Write

TJ Level B Ch 12 Topic in a
Nutshell pg 151

Write and Do

Display a group of numbers, including fractions (with the same denominator) on the board. Ask children to draw an empty number line on their boards then order the numbers and fractions on the number line.

Say

In a large open space identify three different areas for 'bigger than', 'smaller than' and 'equal to'. Call out or write two
fractions on a board, e.g. $\frac{3}{4}$ is
\qquad
out which phrase will complete the statement and move to that area.

Say, Write and Do

Call out pairs of equivalent fractions and ask children to give a thumbs up for correct and thumbs down for incorrect
e.g. $\frac{2}{4}$ and $\frac{1}{2}$, or $\frac{4}{10}$ and $\frac{2}{5}$.

Topic \& CfE Outcome - Fractions, decimal fractions and percentages

Through taking part in practical activities including use of pictorial representations, I can demonstrate my understanding of simple fractions which are equivalent. MTH 1-07c

Benchmarks

- Uses the correct notation for common fractions to tenths, for example, $\frac{1}{2}, \frac{2}{3}$ and $\frac{5}{8}$.
- Compares the size of fractions and places simple fractions in order on a number line.
- Uses pictorial representations and other models to demonstrate understanding of simple equivalent fractions, for example $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}$.
- Explains the role of the numerator and denominator.
- Uses known multiplication and division facts and other strategies to find unit fractions of whole numbers, for example, $\frac{1}{2}$ or $\frac{2}{4}$.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Know simple equivalences, i.e. $\frac{1}{2}=\frac{2}{4}$ Know common percentages, i.e. $100 \%=1$ whole $50 \%=\frac{1}{2}$ Skills (mentally, with jottings and materials if needed) Work out 50% by halving	Understand simple equivalences in fractions $\frac{1}{2}=\frac{2}{4}$ I use concrete and visual representations to aid my understanding I can explain the role of the denominator and numerator by relating it to my concrete and pictorial representations of a fraction I can compare and order simple fractions - halves, quarters, fifths and tenths and other simple fractions (including equivalents) I recognise that a relationship exists between fractions and simple percentages - I can build a fraction wall to show halves, quarters, fifths and tenths - I can compare and order halves, quarters, fifths and tenths using the fraction wall - I can compare and order halves, quarters, fifths and tenths using concrete items and pictorial representations, e.g. pizza, objects, number lines - I can work out which simple fractions are equal - I can build a fraction wall to show other simple fractions, e.g. thirds, quarters, eighths, sixths, twelfths - I can compare and order these simple fractions using the fraction wall - I can compare and order these simple fractions using other items, e.g. pizza, objects, number lines - I can work out which of these simple fractions are equal - I understand that shapes or objects can be shared into 100 equal parts and each is called one hundredth - I can identify one hundredth of a shape by counting, cutting and colouring - I recognise the \% sign and when it is used in real-life - I know that $100 \%=1$ whole and can use associated vocabulary to describe 100%, i.e. all, whole, everything - 1 know that $50 \%=\frac{\mathbf{1}}{\mathbf{2}}$	HAM Teaching Cards F1.5, F1.6a, F1.6b TJ 1b Ch 16 Ex 2 Ex 3 pgs 188-191	Write HAM Question Bank F1.5, F1.6a \& F1.6b Write TJ Assessment Pack 1-07c Say and Write Call out pairs of fractions and ask children to write down whether they have the same or a different value, e.g. $\frac{\mathbf{1}}{\mathbf{2}}=\frac{\mathbf{2}}{\mathbf{4}}$ Children can use materials or drawing to explore whether the fractions are equivalent or not. Say and Write List several words used in the lesson, e.g. fractions, equal, ordering, greater than, less than, equivalent, denominator, numerator, fraction wall. Ask children to write at least three sentences correctly using these words to help someone else understand them. Say, Write and Do Each child writes a hundredth fraction on their whiteboard. Ask them to line up in order from smallest to largest fraction. If they find someone else with their fraction, one of them needs to change it so each child has a different fraction. Repeat as many times as you wish.

Topic \& CfE Outcome - Money

I can use money to pay for items and can work out how much change I should receive. MNU 1-09a and
I have investigated how different combinations of coins and notes can be used to pay for goods or be given in change. MNU 1-09b

Benchmarks

- Identifies and uses all coins and notes to $£ 20$ and explores different ways of making the same total.
- Records amounts accurately in different ways using the correct notation, for example, $149 p=£ 1 \cdot 49$ and $7 p=£ 0 \cdot 07$.
- Uses a variety of coin and note combinations, to pay for items and give change within $£ 10$.
- Applies mental agility number skills to calculate the total spent in a shopping situation and is able to calculate change.
- Demonstrates awareness of how goods can be paid for using cards and digital technology.

Mental Strategies	Skills	Possible Resources	Assessment
Recall	I can ta	HAM Teaching Cards	Write
Number bonds to 100	an	MF 1.5, 1.6, 1.7, 1.8	TJ 1b Ch 7 pgs $83-8$
	I can recognise all coins and notes to $£ \mathbf{2 0}$	H5 Teacher's Notes	Write
Skills (mentally, with jottings and materials if needed)		pgs 51-54	TJ Level C Ch 3 Topic in a
	I can use all coins and notes up to $£ \mathbf{2 0}$ to pay for item	H5 Tbk pgs 13-14	Nutshell pgs 33 Q1-6
	I can choose appropriate coins and notes to give an estimate and check change given when there is not the exact amount to	TJ 1b	Say and Do Display 'deals' related to items,
Counting back from £1	pay for something	Revision of Money pg 75	for example, for cartons of fruit juice: 3×1 litre for $£ 2 \cdot 50,2 \times$
	I can work out change from $£ 1$		1.5 litre for $£ 2.60,6 \times 200 \mathrm{~m}$
Use counting on to calculate the		TJ Level C Ch3 Ex 1	for $£ 2 \cdot 60$. Children discuss with a partner which is the best dea
difference between numbers	I can work out the total cost, how I should pay and any change I should receive when buying several items (to $£ 10$)	Ex 2 pgs 26-29 TJ 1b Ch 7	and why. Then take suggestions from the class, and see if everyone agrees.
Number line addition and subtraction to and from 100		$\begin{aligned} & \text { Ex } 1 \\ & \text { Ex } 2 \end{aligned}$	
		$\begin{aligned} & \text { Ex } 2 \\ & \text { Ex } 3 \text { pgs } 76-82 \end{aligned}$	Say and Do Give children a takeaway
	I have begun to understand the use of the decimal point in relation to money		menu. Groups make up an order for two food items and
Add several small numbers, starting with the smallest, or by reordering to find			nk. They find the total an
	-1		decide whet
			$£ 5$ or $£ 10$ note. Then they work
pairs that equal 10 or	ing		out how much change they
are near tens, i.e.	have different values and I can sort and place		should receive.

Topic \& CfE Outcome - Time

I can tell the time using 12 hour clocks, realising there is a link with 24 hour notation, explain how it impacts on my daily routine and ensure that I am organised and ready for events throughout my day. MNU 1-10a

Benchmarks

- Tells the time using half past, quarter past and quarter to using analogue and digital 12 hour clocks.
- Records 12 hour times using am and pm and is able to identify 24 hour notation, for example, on a mobile phone or computer.

Mental Strategies	Skills	Possible Resources	Assessment
Recall	I can engage in discussion about why time is important in our	HAM Teaching Cards	Write
1 hour $=60 \mathrm{mins}$	lives	T1.5b	HAM Question Bank T1.5c
$\frac{3}{4}$ of an hour $=$	I can tell the time on digital 12 hour and analogue clocks using	TJ 1a Ch 11	Do
45 mins 1	half past, quarter past and quarter to	Ex 2 pgs 100-103	Practise addition and
$\frac{1}{2}$ an hour $=30 \mathrm{mins}$	I understand the difference between am and pm	TJ 1b Ch 4	context of time by giving
		Ex 1	children a time and asking
$\overline{4}$ an hour $=15 \mathrm{mins}$	I can work out time durations	Ex 2	them to work out how many minutes to the next hour. It is
12 o'clock after am is noon	I can put several times in order using am and pm I can read, interpret and create timetables to help in planning	Ex 4 pgs 33-42 TJ Level B Ch 13	45 minutes past 1 . How many minutes to 2 o'clock?' Adapt for any times, including crossing an
12 o'clock after pm is midnight	my own time - I can match an analogue time and a digital time	$\begin{aligned} & \text { Ex } 2 \\ & \text { Ex } 3 \\ & \text { Ex } 4 \text { pgs } 155-161 \end{aligned}$	hour. 'How many minutes from 45 minutes past 5 to 30 minutes past 6?'
Skills (mentally, with	- I can tell the time on digital and analogue clocks using half past, quarter past and quarter to	TJ 1a Ch4	Write and Do
jottings and materials if needed)	- I can recognise analogue and digital clocks and talk about their differences - I can explain how digital time is represented, i.e. which digits	Ex 4 Qu 2 pgs $44-45$ TJ LevelC Ch4	Each child writes a digital pm time on their whiteboard. Then all children in each group put
Order times from earliest to latest in both analogue and	represent the hours and which represent the minutes that have passed by in the day - I can recognise and show time on analogue and digital clocks	Ex1 Qu 1 pg 35 http://nrich.maths.or	themselves in order from earliest to latest.
digital representations	using half past, quarter past and quarter to using analogue and digital 12 hour clocks. - I can answer simple problems involving time using half past,	g/4806	Do Split the class into two groups and ask one group to write a
Count on and back to 60	quarter past and quarter to using analogue and digital 12 hour clocks and durations in hours and minutes - I can calculate simple durations and start and finish times		digital time on their whiteboard. The other group writes a time in words. Ask the
Counting in fives	involving whole, half and quarter hours - I can read from analogue and digital displays using am and pm.		group who have written the digital time to walk around the
When counting on or back an hour and a half, count the full hour then the half	- I have begun to explore the link between the 12 hour and 24 hour clocks		class and try to find a match to their time with the children who wrote the time in words. If they cannot find an exact match, they try to find the match that is closest. Get the children to show you their boards. Discuss any that stand out as being incorrect but don't correct the children, ask the children to offer corrections.

Topic \& CfE Outcome - Time

I can use a calendar to plan and be organised for key events for myself and my class throughout the year. MNU 1-10b

Benchmarks

- Records the date in a variety of ways, using words and numbers.
- Uses and interprets a variety of calendars and 12 hour timetables to plan key events.
- Knows the number of seconds in a minute, minutes in an hour, hours in a day, days in each month, weeks and days in a year.
- Orders the months of the year and relates these to the appropriate seasons.

Topic \& CfE Outcome - Time I have begun to develop a sense of how long tasks take by measuring the time taken to complete a range of activities using a variety of timers. MNU 1-10c			
Benchmarks - Knows the number of seconds in a minute, minutes in an hour, hours in a day, days in each month, weeks and days in a year. - Selects and uses appropriate timers for specific purposes.			
Mental Strategies	Skills	Possible Resources	Assessment
Recall $\begin{aligned} & 1 \text { minute }=60 \mathrm{secs} \\ & \frac{1}{2} \text { minute }=30 \mathrm{secs} \end{aligned}$ Skills (mentally, with jottings and materials if needed) Count on and back to 60	I can measure how long it will take to do something using nonstandard, then standard units of time, showing that I have a sense of how long a second, minute or hour lasts I can estimate what I can do in different lengths of time, checking my estimates using a variety of different timers and units of time - I can demonstrate that I have a sense of how long seconds, minutes and hours last - I can use a variety of digital timers to measure time taken to complete tasks - I can confidently use a variety of time devices - I can choose appropriate units of time to measure a task - I can confidently estimate, measure and compare how long it will take to do certain tasks or actions using appropriate standard time measurements - seconds, minutes and hours	$\begin{aligned} & \text { TJ 1b Ch } 8 \\ & \text { Ex } 2 \\ & \text { Ex } 3 \text { pgs } 88-90 \end{aligned}$	Write TJ 1b Ch 8 The 3R's Qu 8 - 12 $\text { pg } 92$ Do Estimate how many of a particular skill you can do in 1 minute, 5 minutes etc. Complete activity and compare results.

Topic \& CfE Outcome - Measurement

I can estimate how long or heavy an object is, or what amount it holds, using everyday things as a guide, then measure or weigh it using appropriate instruments and units. MNU 1-11a

Benchmarks

- Uses knowledge of everyday objects to provide reasonable estimates of length, height, mass and capacity.
- Makes accurate use of a range of instruments including rulers, metre sticks, digital scales and measuring jugs when measuring lengths, heights, mass and capacities using the most appropriate instrument for the task.
- Records measurements of length, height, mass and capacity to the nearest standard unit, for example, millimetres (mm), centimetres (cm), grams
(g), kilograms (kg), millilitres (ml), litres (I).
- Compares measures with estimates.
- Uses knowledge of relationships between units of measure to make simple conversions, for example, $1 \mathrm{~m} 58 \mathrm{~cm}=158 \mathrm{~cm}$.
- Reads a variety of scales on measuring devices including those with simple fractions, for example, $\frac{1}{2}$ litre.

Mental Strategies	Skills	Possible Resources	Assessment
Recall $\begin{aligned} & 1 \text { metre }=100 \mathrm{~cm} \\ & \frac{1}{2} \text { metre }=50 \mathrm{~cm} \\ & \frac{1}{4} \text { metre }=25 \mathrm{~cm} \end{aligned}$ Skills (mentally, with jottings and materials if needed) When reading scales, work out the value of increments of the scale by reading two main points then count the number of intervals. Divide the amount between two main points by the number of intervals	I can estimate, measure and compare different quantities in length I can use measurement skills to solve real-life problems I can select and use appropriate units of measure when solving problems, knowing the importance of accuracy - I can interpret a practical problem and decide which type of measure to use - I can solve a variety of practical problems by estimating and measuring - I know when I need to be accurate and when to round - I can decide the correct unit to use in reaching my answer - I can explain my results and record my findings in a variety of ways - I am beginning to use scales in solving problems Length - I can measure length with increasing accuracy using cm and m - I know that $\frac{1}{4} \mathrm{~m}=25 \mathrm{~cm}$ - I can estimate length with increasing accuracy using standard units e.g. less than $\frac{1}{4} \mathrm{~m}$, about $\frac{1}{4} \mathrm{~m}$ and more than $\frac{1}{4} \mathrm{~m}$ - I can select and use a range of equipment to measure items and know when to approximate - I can convert between metres and centimetres and vice versa - I can measure to the nearest cm - I can read a variety of scales accurately - I can measure objects and link to real life - I have experienced using best practice when using measuring instruments	HAM Teaching Cards M1.5 (Elements across all measure) H4 Teacher's Notes pgs 223-225 H4 Measure Wbk pgs 19-22 TJ 1a Ch 17 Ex 3 Q4-8 pg 149 http://www.mathsisf un.com/measure/met ric-length.html Add http://nrich.maths.or g/1266 Length H4 Teacher's Notes pgs 178-182 H4 Measure Wbk pgs 1-4 TJ Level B Ch 15 Ex 3 Ex 4 pgs 180-184 TJ 1b Ch 15 Revision of Length pg 174 TJ 1b Ch 15 Ex 1 pgs 175-176	Write TJ Level B Ch 15 Topic in a Nutshell pg 185 Do Children work in pairs to measure parts of their body e.g. head span, hand span, height. The children should choose the correct equipment for each body part. This could be done at the start and end of the year to allow children to compare the differences in their measurements over the session.

Topic \& CfE Outcome - Measurement

I can estimate how long or heavy an object is, or what amount it holds, using everyday things as a guide, then measure or weigh it using appropriate instruments and units. MNU 1-11a continued

Benchmarks

- Uses knowledge of everyday objects to provide reasonable estimates of length, height, mass and capacity.
- Makes accurate use of a range of instruments including rulers, metre sticks, digital scales and measuring jugs when measuring lengths, heights, mass and capacities using the most appropriate instrument for the task.
- Records measurements of length, height, mass and capacity to the nearest standard unit, for example, millimetres (mm), centimetres (cm), grams
(g), kilograms (kg), millilitres (ml), litres (I).
- Compares measures with estimates.
- Uses knowledge of relationships between units of measure to make simple conversions, for example, $1 \mathrm{~m} 58 \mathrm{~cm}=158 \mathrm{~cm}$.
- Reads a variety of scales on measuring devices including those with simple fractions, for example, $\frac{1}{2}$ litre.

Mental Strategies	Skills	Possible Resources	Assessment
Recall $\begin{aligned} & 1 \mathrm{~kg}=1000 \mathrm{~g} \\ & \frac{1}{2} \mathrm{~kg}=500 \mathrm{~g} \\ & \frac{1}{4} \mathrm{~kg}=250 \mathrm{~g} \end{aligned}$ Skills (mentally, with jottings and materials if needed) When reading scales, work out the value of increments of the scale by reading two main points then count the number of intervals. Divide the amount between two main points by the number of intervals	I can estimate, measure and compare different quantities weight I can solve problems involving measures in real-life contexts I can select and use appropriate units of measure when solving problems, knowing the importance of accuracy - I can estimate and weigh accurately using $1 \mathrm{~kg}, \frac{1}{2} \mathrm{~kg}$ and $\frac{1}{4} \mathrm{~kg}$ - I have a sense of standard units of weight and can use this to estimate and make comparisons using $200 \mathrm{~g}, 100 \mathrm{~g}$ and 50 g - I can use a range of equipment to weigh common items and know when to approximate - I know that $\frac{1}{4} \mathrm{~kg}=250 \mathrm{~g}$ - I can convert between kg and g and vice versa - I can read a variety of scales accurately - I can weigh everyday items and objects and link this to real life contexts	Weight H4 Teacher's Notes pgs 190-197 H4 Measure Wbk pgs 9-15 TJ Level B Ch 18 Ex 3 pg 202 TJ 1a Ch 22 Ex 3 pgs 191-192 TJ 1b Ch 19 Revision of Weight pg 211 TJ 1b Ch 19 Ex 1 pgs 212-213 http://www.ictgames. com/weight.html	Write TJ Level B Ch 18 Topic in a Nutshell Pg 204 Write TJ 1a Ch 22 The 3 R's pgs 193 Do Give the children parcels that have a specified weight and a pan balance. Children use the weights to estimate what the parcel weighs then use the weights and the pan balance to find the correct weight. They should have a set of scales to check their answer too. They could list the weights that make the overall weight of the parcel, i.e. $350 \mathrm{~g}=200 \mathrm{~g}, 100 \mathrm{~g}$ and 50 g weights.

Topic \& CfE Outcome - Measurement

I can estimate how long or heavy an object is, or what amount it holds, using everyday things as a guide, then measure or weigh it using appropriate instruments and units. MNU 1-11a

Benchmarks

- Uses knowledge of everyday objects to provide reasonable estimates of length, height, mass and capacity.
- Makes accurate use of a range of instruments including rulers, metre sticks, digital scales and measuring jugs when measuring lengths, heights, mass and capacities using the most appropriate instrument for the task.
- Records measurements of length, height, mass and capacity to the nearest standard unit, for example, millimetres (mm), centimetres (cm), grams
(g), kilograms (kg), millilitres (ml), litres (I).
- Compares measures with estimates.
- Uses knowledge of relationships between units of measure to make simple conversions, for example, $1 \mathrm{~m} 58 \mathrm{~cm}=158 \mathrm{~cm}$.
- Reads a variety of scales on measuring devices including those with simple fractions, for example, $\frac{1}{2}$ litre.

Mental Strategies	Skills	Possible Resources	Assessment
Recall $\begin{aligned} & \overline{1} \text { litre }=1000 \mathrm{ml} \\ & \frac{1}{2} \text { litre }=500 \mathrm{ml} \\ & \frac{1}{4} \text { litre }=250 \mathrm{ml} \end{aligned}$ Skills (mentally, with jottings and materials if needed) When reading scales, work out the value of increments of the scale by reading two main points then count the number of intervals. Divide the amount between two main points by the number of intervals	Capacity and Volume I can estimate, measure and compare different quantities capacity and volume I can solve problems involving measure in real-life contexts I can select and use appropriate units of measure when solving problems, knowing the importance of accuracy - I can estimate and measure volume accurately using litres, $\frac{1}{2}$ litre and $\frac{1}{4}$ litre - I can record measurements with ml and litres - I have a sense of standard units of volume and can use this to estimate and make comparisons - I can use a range of equipment to measure volume common items and know when to approximate - I know that $\frac{1}{4}$ litre $=250 \mathrm{ml}$ - I can convert between litres and ml and vice versa - I can read a variety of scales accurately - I can measure the volume of everyday items and link this to real life contexts	Volume H4 Teacher's Notes pgs 219-221 H4 Tbk pgs 73-75 TJ 1b Ch 19 Ex 2 Ex 3 pgs 214-216 http://www.mathsisf un.com/measure/met ric-volume.html	Say Set up several containers that appear different but hold the same volume of water. Ask the children to consider which container has the largest or smallest volume in it. Allow them to prove their statements by measuring the amount in a container that has a scale on it. Make Children make a poster to give top tips for reading scales and for measuring accurately.

Topic \& CfE Outcome - Measurement I can estimate the area of a shape by counting squares or other methods. MNU 1-11b			
Benchmarks - Uses square grids to estimate then measure the areas of a variety of simple 2D shapes to the nearest half square. - Creates shapes with a given area to the nearest half square using square tiles or grids. - Recognises that different shapes can have the same area (conservation of area).			
Mental Strategies	Skills	Possible Resources	Assessment
Recall All multiplication facts from 2 to 10 times tables Skills (mentally, with jottings and materials if needed) Choose the most effective method of counting the number of squares in an area	I can estimate, measure and compare different quantities area I can make comparisons and order measurements of different objects, using direct comparison and non-standard unites area I can calculate the area of a shape by counting squares and half squares I can use cm^{2} and $\frac{1}{2} \mathrm{~cm}^{2}$ correctly I know and can demonstrate that different shapes can have the same area - I can calculate the area of a shape using half squares, adding halves together to make whole squares. - I can calculate the area of irregular shapes drawn on a grid by counting the squares, half squares and other fractions 'contained'. - I can use notation for area measured in squared centimetres correctly - cm^{2}	HAM Teaching Card M1.4d H4 Teacher's Notes pgs 184-187 H4 Measure Wbk pgs 5-8 TJ Level C Ch 12 Ex 5 Qu 3-4 Ex 6 pgs 144-146 TJ 1b Ch 15 Ex 3 Qu 3 Ex 4 pgs 180-181	Write Question Bank M1.4d Write TJ 1b Ch 15 The 3 R's Qu 5-7 pg 183 Do Each child chooses an object to draw around on cm squared paper. Children swap drawings and estimate the area covered by the drawing. Then that child counts the squares in the shape and writes the area and compares this against the estimation. Finally, they order all their pictures from smallest area to largest area.

Topic \& CfE Outcome - Mathematics - its impact on the world, past, present and future

I have discussed the important part that numbers play in the world and explored a variety of systems that have been used by civilisations throughout history to record numbers. MTH 1-12a

Benchmarks

- Investigates and shares understanding of the importance of numbers in learning, life and work.
- Investigates and shares understanding of a variety of number systems used throughout history.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Read and identify numbers to 1000 Skill (mentally, with jottings and materials if needed) Compare numbersbiggest and smallest to 1000 Order numbers from smallest to largest to 1000 Match numbers to characters from other number systems Match number names to numbers (to 1000)	I can write the first few numbers in another number system and explain briefly how that system works I have investigated various number systems, e.g. Babylonian, Egyptian, Roman I can explain why numbers are important in my life and in the world around me	http://nrich.maths.or g/774 http://www.mathsisf un.com/romannumerals.html http://www.educatio nscotland.gov.uk/stu dyingscotland/resour cesforlearning/learnin g/Contextsforstudy/g reatscots/valentine.as p	

Topic \& CfE Outcome - Expressions and Equations I can continue and devise more involved repeating patterns or designs, using a variety of media. MTH 1-13a			
Benchmarks - Continues and creates repeating patterns involving shapes, pictures and symbols. - Describes, continues and creates number patterns using addition, subtraction, doubling, halving, counting in jumps (skip counting) and known multiples.			
Mental Strategies	Skills	Possible Resources	Assessment
Skills (mentally, with jottings and materials if needed) Count on and back in $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s to 1000 from any number. Build up to $6,7,8$ and 9 after initial teaching	Create complex patterns I can explore and continue different visual patterns or designs I can explore how visual patterns relate to number patterns I can describe and continue a range of different number sequences - I can explain the rule for simple counting patterns - I can discover the rule for more complicated number sequences such as $1,2,4,7,11 \ldots$ - I can apply the rule for a number sequence to extend the pattern	HAM Teaching Cards MD 1.4 H4 Teacher's Notes pgs 106 H4 Number Wbk pgs 16-17 TJ 1b Ch 13 Revision of Patterns pg 139	Write TJ Level B Ch 16 Topic in a Nutshell pg 191 Write TJ 1a Ch 23 The 3 R's pg 198

Topic \& CfE Outcome - Expressions and Equations

Through exploring number patterns, I can recognise and continue simple number sequences and can explain the rule I have applied. MTH 1-13b

Benchmarks

- Counts forwards and backwards in 2 s , 5 s and 10 s from any whole number up to 1000.
- Describes patterns in number, for example, in the multiplication tables and hundred square.
- Describes, continues and creates number patterns using addition, subtraction, doubling, halving, counting in jumps (skip counting) and known multiples.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Odd and even numbers to 100 (then beyond) Read and identify numbers to 1000 Skill (mentally, with jottings and materials if needed) Use multiplication facts to skip count Compare numbers biggest and smallest to 1000 Order numbers from smallest to largest to 1000	I can create and complete number sequences by repeatedly adding or subtracting a number within a familiar number range I can recognise and explain the rule for number sequences containing: - Multiplication tables 6, 7, 8 and 9 - ascending/descending - I can identify the next number before or after in a sequence - I can use my knowledge of number bonds to help me create a pattern - I can put numbers from this pattern in order - I can continue a sequence in steps of multiples of 10 and other helpful numbers - I can spot this sequence and can talk about the different patterns it creates in its numbers - I can create and display this pattern in a range of different ways - I can solve problems which involve this sequence	HAM Teaching Cards AS 1.4c TJ 1b Ch 13 Ex 1 pgs 140-141 TJ Level B Ch 16 Ex 3 pgs 189-190 TJ Level C Ch 13 Ex 1 Qu 4-9 pgs 150-151	Write TJ 1b Ch 13 The 3R's pg 144 Say Children agree a start number and a step size. They stand in a group (facing each other if pairs, or in a circle if more) and pass a ball or bean bag as they say the next number in the sequence. Say and Make Ask a group of four or five children secretly to come up with a pattern. Get the children to reveal their whiteboards one at a time. The other children try to work out what the pattern is. Write and Say Set a start number and the size of each step, and challenge the children to continue the pattern of counting on or back in a set time limit. Use the same pattern again and see if they can continue the pattern further in the same time.

Topic \& CfE Outcome - Expressions and Equations

I can compare, describe and show number relationships, using appropriate vocabulary and the symbols for equals, not equal to, less than and greater than. MTH 1-15a

Benchmarks

- Understands and accurately uses the terms 'equal to', 'not equal to', 'less than', 'greater than', and the related symbols ($=, \neq,<,>$) when comparing quantities.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Know what greater than, less than and equal to means and be able to give examples, i.e. 36 is greater than 15 . Tell me a number that is less than 21. Skills (mentally, with jottings and materials if needed) Add or subtract a pair (or more) of numbers to demonstrate knowledge of equality, $\text { i.e. } 23+3=18+8$ Find the value of a missing number by applying inverse operations - $\begin{aligned} & \Delta+24=38 \\ & 38-24=14 \\ & \Delta=14 \end{aligned}$ Find the value of a missing number by applying balancing - $\begin{aligned} & \Delta+24=38 \\ & \Delta+24-24=38-24 \\ & \Delta=14 \end{aligned}$	I can use symbols to help describe number relationships - to 1000 - I can compare numbers to decide which is bigger or smaller to 1000 - I can recognise the 'greater than' sign (>) and 'less than' sign (<) - I can complete a statement by inserting > or < to make it true, e.g. $789 . . .547$ - I can complete a statement by adding a number to make it true, e.g. 259 > ... - I can find the value of missing symbols, e.g. $2 \times \Delta=8$ - I can confidently use the symbols = and \neq	HAM Teaching Cards NP 1.8b TJ 1 b Ch 18 Ex 4 pgs 203-204 http://www.mathsisf un.com/equal-lessgreater.html S.E.A.L. Approaches as per Facile planner	Write TJ 1b Ch 18 The 3R's pg 209 Write and Say On the board write a statement using < or > but use a question mark for one side, e.g. ? > 100 or 120 < ? The children write ten examples which would complete it on their miniwhiteboards. Use their answers as a discussion point for the class. Say Put five statements using the <> = signs on the board but include some errors. Ask the children to consider the statements and find the errors. Discuss the errors as a class and ask the children to correct them.

Topic \& CfE Outcome - Expressions and Equations

When a picture or symbol is used to replace a number in a number statement, I can find its value using my knowledge of number facts and explain my thinking to others. MTH 1-15b

Benchmarks

- Applies understanding of the equals sign as a balance, and knowledge of number facts, to solve simple algebraic problems where a picture or symbol is used to represent a number, for example, $+17=30$ and $\times 6=30$.

Mental Strategies	Skills	Possible Resources	Assessment
Recall When looking for the operation applied in a function machine, know that if the number goes from smaller to larger the operation could be either + or x and inversely, if the number goes from larger to smaller the operation could be either - or :- Skills (mentally, with jottings and materials if needed) Find the value of a missing number by applying inverse operations - $\begin{aligned} & \Delta+24=38 \\ & 38-24=14 \\ & \Delta=14 \end{aligned}$ Find the value of a missing number by applying balancing - $\begin{aligned} & \Delta+24=38 \\ & \Delta+24-24=38-24 \\ & \Delta=14 \end{aligned}$	I can use a function machine involving more complex equations I can explain how to work out the answer I can create a rule for finding the missing number - I can 'work backwards' to find the missing number in a number machine - I can find the missing value by balancing either side of an equation	$\begin{aligned} & \text { TJ 1b Ch } 18 \\ & \text { Ex } 5 \text { pgs } 205-208 \end{aligned}$ S.E.A.L. Approaches as per Facile planner	Write TJ 1b Ch 18 The 3 R's pg 210 Say Approach this activity as a 'Number Talk'. Present the children with a calculation with a missing value. Let the children solve this in their own way. Ask the children to share their strategies for finding a missing number.

Topic \& CfE Outcome - Properties of 2D shapes and 3D objects

I have explored simple 3D objects and 2D shapes and can identify, name and describe their features using appropriate vocabulary. MTH 1-16a

Benchmarks

- Names, identifies and classifies a range of simple 2D shapes and 3D objects and recognises these shapes in different orientations and sizes.
- Uses mathematical language to describe the properties of a range of common 2D shapes and 3D objects including side, face, edge, vertex, base and angle.
- Identifies 2D shapes within 3D objects and recognises 3D objects from 2D drawings.

Mental Strategies	Skills	Possible Resources	Assessment
	I have begun to identify regular/irregular 2D shapes I can describe 2D shapes using the terms of sides, edges and corners I can describe 3D objects using the terms of faces(flat and curved), edges and vertices I can recognise 3D objects from 2D drawings I have explored an extended range of 3D objects and 2D shapes, discuss and compare their properties I can sort shapes according to set criteria and by my own criteria I can identify a right-angled triangle I can use knowledge of right angles to help compare and describe the angles in 2D shapes - I can use the terms sides and corners when discussing 2D shapes - I can use the terms face, edge and corner when describing a 3D shape - I have explored an extended range of 2D shapes and 3D objects - I can analyse and record my findings about properties of different 2D shapes and 3D objects - I can use my extended knowledge of shape to create a wider variety of tiling patterns and models and nets - I can find and check examples of right angles around me - I can sort angles according to whether they are right angles or smaller/larger than a right angle and talk about what I've done - I can talk about and check angles in 2D shapes and 3D objects - I can sort shapes according to the angles they have and discuss my findings	HAM Teaching Cards SPM 1.11 SPM 1.15 (Relate to angles in shapes such as squares, rectangles and right-angled triangles) 2D Shape TJ Level B Ch 8 Ex 2 Qu 12-13 pg 85 TJ 1a Ch 13 Ex 2 pgs 115-118 TJ 1b Ch 9 Revision of 2 Dimensions pg 93 3D Shape H4 Teacher's Notes pgs 227-236 H4 Tbk pgs 76-81 TJ 1b Ch 17 Revision of 3 Dimensions pg 194 TJ 1b Ch 17 Ex 1 pgs 195-196	Write TJ Assessment Pack MTH 1-16a Write TJ 1a Ch 13 The 3 R's pg 119 Write TJ 1b Ch 17 The 3 R's pg 197 Say All children draw a 2D shape on their whiteboard. Encourage 'interesting' shapes such as reentrant hexagons or irregular four-sided shapes (quadrilaterals). Children take turns to reveal their shape very slowly from behind a screen (use a book or a board). The others try to name the shape as soon as they can. Say Display three 3D objects. Ask one child to describe one of these objects to the class without saying the name of the shape. Children use the clues to identify which of the three objects is being described. Repeat with other children and other sets of objects. Do Get the children to build models using 3D objects. The children have to explain which shapes they have used. Ask the children what would happen if you substituted a particular shape with another. Get them to explain in terms of properties why a particular shape could or could not be substituted in the model.

Topic \& CfE Outcome - Properties of 2D shapes and 3D objects I can explore and discuss how and why different shapes fit together			
Benchmarks - Identifies examples of tiling in the environment and applies knowledge of the features of 2D shapes to create tiling patterns incorporating two different shapes.			
Mental Strategies	Skills	Possible Resources	Assessment
	I have experimented with a variety of 2D shapes to experience how they can or cannot tile I can create more complex tiling patterns using a variety of 2D shapes - I can use extended knowledge of shape to create a wider variety of tiling patterns and models with nets	HAM Teaching Cards MC 1.10 H4 Teacher's Notes pgs 250-255 H4 Shape and Handling Data Wbk pgs 5-6 TJ 1b Ch 9 Ex 1 Qu 11-18 pgs 97-98 http://nrich.maths.or g/4832	Write TJ Assessment Pack MTH 1-16b Write TJ 1b Ch 9 The 3 R's pg 99-100 Say and Do Give children a selection of shapes and ask them to sort them into a 'Can Tile' and 'Cannot Tile' pile. The children should then be asked to explain the properties of a particular shape and why it can or cannot tile.

Topic \& CfE Outcome - Angle, symmetry and transformation
 I can describe, follow and record routes and journeys using signs, words and angles associated with direction and turning. MTH 1-17a

Benchmarks

- Uses technology and other methods to describe, follow and record directions using words associated with angles, directions and turns including, full turn, half turn, quarter turn, clockwise, anticlockwise, right turn, left turn, right angle.
- Knows that a right angle is 90°.
- Knows and uses the compass points, North, South, East and West.
- Uses informal methods to estimate, compare and describe the size of angles in relation to a right angle.
- Finds right angles in the environment and in well-known 2D shapes.

Mental Strategies	Skills	Possible Resources	Assessment
	I know that angles are measured in degrees and a right angle is 90° I can recognise a right angle I know that a quarter turn can also be called a 90° or right angle turn I can use compass points to help locate positions and follow directions I can create simple maps and plans for pathways I can record and interpret a route or journey using pictures, symbols and maps - I have explored and made different maps and plans of familiar and fantasy places - I understand that a map or plan shows a 2D representation from above of a real place - I have experimented with how to represent places or items with symbols and pictures - I can record directions as a set of instructions and can use symbols or initials to help, including compass points - I can describe journeys using a wide range of vocabulary including compass points - I can create a path on squared paper and can describe it to someone or follow the directions I am given by someone else to create a route - I can program a toy or computer program to make a journey - I recognise how a right angle is represented - I can show that I know an angle is a measure of a turn - I can identify examples of right angles in the environment	HAM Teaching Cards SPM 1.16 H4 Teacher's Notes pgs 257-263 H4 Shape and Handling Data Wbk pg 7-10 TJ 1a Ch 20 Ex 2 Qu 5-11 pgs 177-178 TJ 1b Ch 6 Ex 2 Ex 3 pgs 69-72	Write TJ Assessment Pack MTH 1-17a Write TJ 1a Ch 20 The 3 R's pg 179 Write TJ 1b Ch 6 The 3 R's pgs 73-74 Say and Write Display a large 5×5 grid and draw a pathway using a continuous line. Children work in pairs to write instructions to follow the line. Discuss the different language they used to describe it. Did they choose turns left/right, quarter turns clockwise or anti-clockwise or compass points? Challenge them to describe the path again using different language. Do Draw a route with turns on the board. Describe each step of the route using appropriate direction statements. Ask children to indicate if they think the statement matches the route or not by showing thumbs up or down.

Topic \& CfE Outcome - Angle, symmetry and transformation

I have developed an awareness of where grid reference systems are used in everyday contexts and can use them to locate and describe position. MTH 1-18a

Benchmarks

- Identifies where and why grid references are used.
- Describes, plots and uses accurate two figure grid references, demonstrating knowledge of the horizontal and vertical location.

Mental Strategies	Skills	Possible Resources	Assessment
Recall The horizontal location point is noted before the vertical point	I have explored real-life circumstances where grid references are used I can use grid references to discuss points on a grid - I can talk about where in real life I might need to interpret a grid to locate a position - I can describe a position within a grid - I can interpret and use grids - I can create a grid and give instructions to others about using it	HAM Teaching Cards SPM 1.9 (Revision of activities and associated written tasks) H4 Teacher's Notes pgs 238-240 H4 Shape and Handling Data Wbk pg 1 H4 Tbk pg 82 TJ 1b Ch 11 Ex 1 Ex 2 pgs 115-121 http://nrich.maths.or g/1259	Write HAM Question Bank SPM 1.9 Write TJ 1b Ch 11 The 3 R's pg 122 Write TJ Assessment Pack MTH 1-18a Write and Do Draw a 10×10 grid with grid references on the board and write a letter in every cell. Use the grid references as a code to create a word. For example, E7 B5 G1 might represent CAT. Children work in pairs to solve the code and find the word. Once you have demonstrated a few examples, ask children to make up their own code words. Children can challenge each other to find the grid references from the given word and vice versa.

Topic \& CfE Outcome - Angle, symmetry and transformation

I have explored symmetry in my own and the wider environment and can create and recognise symmetrical pictures, patterns and shapes.
MTH 1-19a

Benchmarks

- Identifies symmetry in patterns, pictures, nature and 2D shapes.
- Creates symmetrical pictures and designs with more than one line of symmetry.

Mental Strategies	Skills	Possible Resources	Assessment
	I can identify and mark lines of symmetry on a range of different shapes and patterns I can complete and create more complex symmetrical patterns and pictures - I can explain what a line of symmetry means - I can visualise lines of symmetry when given a shape - I can look at a shape and mark on one then two lines of symmetry and check with a mirror - I can sort shapes and a range of objects according to the number of lines of symmetry; zero, one and two lines	HAM Teaching Card SPM 1.12 H4 Teacher's Notes pgs 242-249 H4 Shape and Handling Data Wbk pgs 2-4 and 11-12 H4 Tbk pgs 83-84 TJ Book 1b Ch 2 Revision of Symmetry pg 9 TJ Book 1b Ch 2 Ex 1 Ex 2 pgs 10-17	Write HAM Question Bank SPM 1.12 Write TJ Book 1b The 3 R's Ch 2 pg 18 Write TJ Assessment Pack MTH 1-19a Do Draw around 2D shape templates and then cut out the shapes. They test the shapes for lines of symmetry by folding them and drawing in any lines of symmetry they find. They sort their paper 2D shapes according to the number of lines of symmetry and stick them in these sets on a piece of paper. They write the name of each shape beside it. Make and Do Give each pair or small group a piece of squared paper. Draw a 4×4 grid on the board and colour in or mark symbols or shapes in some of the cells. Challenge children to use this as one half of a symmetrical picture - they can choose any edge as the line of symmetry and then to complete the symmetrical picture. Next, challenge them to use your picture as one quarter of a shape which has two lines of symmetry and they create the complete picture. Compare their pictures and discuss anything interesting they notice.

Topic \& CfE Outcome - Data and analysis

I have explored a variety of ways in which data is presented and can ask and answer questions about the information it contains. MNU 1-20a

Benchmarks

- Selects and uses the most appropriate way to gather and sort data for a given purpose, for example, a survey, questionnaire or group tallies. - Asks and answers questions to extract key information from a variety of data sets including charts, diagrams, bar graphs and tables.

Write

Display this table showing the contents of a basket of fruit at a harvest festival:

Fruit Number	Number
Apple	18
Banana	7
Orange	11
Peach	10
Melon	6

Children draw a bar chart showing the information in the table. This is one example of data that can be used, however, consider the cultural capital that the children have and choose an appropriate data set to reflect this.

Topic \& CfE Outcome - Data and analysis

I have used a range of ways to collect information and can sort it in a logical, organised and imaginative way using my own and others' criteria. MNU 1-20b

Benchmarks

- Selects and uses the most appropriate way to gather and sort data for a given purpose, for example, a survey, questionnaire or group tallies. - Asks and answers questions to extract key information from a variety of data sets including charts, diagrams, bar graphs and tables.

Mental Strategies	Skills	Possible Resources	Assessment
Recall Vocabulary of 'altogether', 'difference', 'more than' and 'less than' Skills (mentally, with jottings and materials if needed) Use addition and subtraction find the total of items, i.e. There are 6 shapes with four or more sides and 2 shapes with less than four so there are 4 more shapes in that loop Skip counting in fives to count tallies	I can sort and organise objects based on my own and others' criteria and talk about what was done I can create and use questions to find out information and display findings in different ways I have explored how information can be sorted and displayed in different ways, talking about what was done - One criterion: pictograms and block diagrams I have explored how information can be sorted and displayed in different ways, talking about what was done - One or two criteria: Venn, Carroll and tree I can use tally marks to collect responses - I can ask and answer questions about the information displayed in the environment - I can give examples of when I have gathered and sorted information - I have explored real-life charts, diagrams and graphs - I can show understanding of what needs to be found out and the kinds of questions to ask - I can show an awareness of the kinds of answers that may be given and how to record them - I can gather information through questioning in an organised way - I can record and display findings in a different ways by using: tallies, lists and tables - I can gather and organise information to create a pictogram - I can show understanding that the information from a pictogram can also be presented in a block graph - I can gather and organise information to create a block graph - I can ask and answer questions about pictograms and block graphs - I can mark tally marks correctly in groups of 5	HAM Teaching Cards IH 1.4a, IH 1.4b	Write HAM Question Bank IH 1.4a, IH 1.4b Write TJ Assessment Pack MNU 1-20b Make, Write and Do Allow the children to sort a collection of items by their own criteria. Work with children to use coloured cubes or counters to create a block graph to represent the data they have sorted. Make, Say, Write and Do Building on children's experiences of making pictograms and block graphs, ask them to think of something they want to find out about and to create a block graph or pictogram about it. Remind them to use labels for categories and to add a title.

Topic \& CfE Outcome - Data and analysis

Using technology and other methods, I can display data simply, clearly and accurately by creating tables, charts and diagrams, using simple labelling and scale. MTH 1-21a

Benchmarks

- Uses a variety of different methods, including the use of digital technologies, to display data, for example, as block graphs, bar graphs, tables, Carroll diagrams and Venn diagrams.
- Includes a suitable title, simple labelling on both axes and an appropriate scale where one unit represents more than one data value in graphs.

Mental Strategies	Skills	Possible Resources	Assessment
	I have extended my knowledge of graphs and their features I can select and use the most appropriate way to display information I can create tables and bar graphs I can use computer packages to create tables and bar graphs - I have discussed and compared the key features of tables, charts, diagrams and graphs - I have explored different ways to present the same information - I can choose which table, chart, diagram or graph I will use to present my information - I can choose the medium to present my information according to my audience - I recognise how my table, chart, diagram or graph has helped me to solve a problem or answer a question - I can ask and answer questions about tables, charts, diagrams and graphs created by myself and others I can devise and use simple questionnaires to collect information I can carry out a survey to collect information I can display results in a variety of ways - I can recognise when I might need to gather information to answer questions or solve problems - I have explored what kind of information I need to gather in order to answer a problem or address a question - I have thought about the kinds of questions I need to ask to get information in the right format - I can decide how to collect and record my information - I can gather my information, talk about my findings and decide what I need to do next to answer my question or solve my problem	Link with MNU 1-20a and MNU 1-20b HAM Teaching Card IH 1.8 H4 Teacher's Notes pgs 272-278 H4 Shape and Handling Data Wbk pgs 17-18 H4 Tbk pgs 89-90 TJ 1b Ch 20 Ex 1 pgs 221-222 HAM Teaching Card IH 1.7 H4 Teacher's Notes pgs 278-284 H4 Shape and Handling Data Wbk pgs 15-16, 19-22 H4 Tbk pg 91-93 TJ Level 1b Ch 20 Ex 1 pg 223 TJ Level C Ch 6 Ex 1 pgs 69-71	Write TJ Assessment Pack MTH 1-21a Write TJ 1a Ch 25 Qu 3 The 3 R's pg 213 Say, Make, Write and Do Explain to children that they are going to do a survey to find out the most popular activities to be included in a school fun day. They decide which questions they should ask the class and how they will do this. Once they have all the information they need, they decide how to show this to everyone. They can choose any format they have learned about. When their displays are complete, take feedback from everyone's work. As a class evaluate the representations, in terms of clarity and ease of interpretation, and analyse the results. Ask children to make statements using the information in the different representations and also to ask each other questions about what they see. Write HAM Question Bank IH 1.7 Write TJ 1a Ch 25 Qu 1 - 2 The 3 R's pg 213 Write TJ Assessment Pack MNU 1-20b Say and Write Tell the children that you are going to design a dream lunch menu for school lunches so they have make a suitable questionnaire that they could use to survey other children. Get the children to work in pairs to come up with some questions that they think are suitable to ask. Their questions might require respondents to write down their food

			preferences, for example, 'What is your favourite food?' 'What would you like to eat for dessert?' 'What would you not want on the school dinner menu?' Their questions could also require yes/no answers, for example, 'Do you think you should have a choice of fruit every day?' 'Should you have chips every day?' Take suggestions from the class for some of the questions, and agree which are the best ones to include.

Topic \& CfE Outcome - Ideas of chance and uncertainty

I can use appropriate vocabulary to describe the likelihood of events occurring, using the knowledge and experiences of myself and others to guide me. MNU 1-22a

Benchmarks

- Uses mathematical vocabulary appropriately to describe the likelihood of events occurring in everyday situations including, probable, likely/unlikely, certain/uncertain, possible/impossible, and fair/unfair.
- Interprets data gathered through everyday experiences to make reasonable predictions of the likelihood of an event occurring.

Mental Strategies	Skills	Possible Resources	Assessment
	I can talk about how likely something is to happen and justify my opinion I can use specific vocabulary to describe the likelihood of an event - I can use the words never, always and sometimes to describe the likelihood of events - I have explored and can use the vocabulary probable, likely/unlikely, certain/uncertain, possible/impossible, and fair/unfair. To describe the likelihood of an event occurring - I can give examples of things that are likely to happen, not likely to happen (unlikely) or impossible to happen - I can sort events according to likelihood	HAM Teaching Card IH 1.5 MC 1.15 TJ Book 1b Ch 21 Ex 1 Ex 2 pgs 224-227	Write HAM Question Bank IH 1.5 Write TJ 1b Ch 23 Qu 1 The 3 R's pg 231 Write TJ Assessment Pack MNU 1-22a Do On the board write these headings: 'Never', 'Always', 'Sometimes' and 'Often'. Read out some statements; 'I walk to school.' 'I play on the computer.' ' I go to ballet lessons.' 'I go to school on a Saturday.' In pairs children discuss which category each statement belongs to, then show their answer by writing N , A, S or O on their whiteboard to show you. Say Show the children that you are putting these cubes into a bag: 5 red, 1 white, 4 green, and 3 yellow. Shake the bag to mix up the cubes. Write the following statements on the board: If I take out one cube (without looking) is it likely or unlikely that I will select: © a green cube \circ a red cube oo a yellow cube \circ a white cube? Record the general consensus about each colour then take out one cube at a time and discuss with children how well the actual results matched their predictions. Ask if anyone can suggest why one colour is more likely than another colour.

Strategies

By the END of First Level, Learners should understand when to use and be able to apply the following strategies. Knowledge of, understanding and application of these strategies should be built across the level.

* Explore and use correctly a variety of mathematical language related to addition, subtraction, multiplication and division
* Emphasise the importance of using mental maths skills and recall in a variety of contexts, e.g. Time (number pairs to 60), Money

Addition and Subtraction

* Emphasise the use of estimation and rounding in calculations
* Re-order numbers when adding - put larger number first
* Count on or back in $1 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$
* Partitioning
* Number Patterns
* Using knowledge of number bonds to 10 and apply in more complicated calculations e.g. 60-7 think 10-7=3, 60-7=53

Multiplication and Division

* Emphasise the use of estimation and rounding in calculations
* Use patterns of last digits e.g. 0 and 5 when counting in fives
* Partition then recombine e.g. double 35 = double $30+$ double 5
* Using halving as inverse of doubling and doubling is equivalent to multiplying by 2
* Use multiplication facts from the multiplication tables e.g. Recognise that there are 15 objects altogether because there are 3 groups of 5
* Link multiplication and division facts to unit fractions e.g. Finding $\frac{1}{3}$ of $9=9 \div 3$
* Recognise that when multiplying by 10 or 100 , the digits move one or two places to the left and zero is used as a place holder, also applying the inverse

[^0]: The above is an overview of the Experiences and Outcomes contained in First Level Pathway 3. It is best practice to bundle together Es \& Os for teaching and learning. This can happen within the curricular area of Numeracy and Mathematics or Numeracy and Mathematics Es \& Os can be bundled with other curricular Es \& Os. Some Es \& Os may be taught in isolation if bundling is not appropriate with the particular contexts for learning that are being explored as tenuously bundled Es \& Os are not advised as relevance and depth of learning would be weak. Advice on bundling is included within this document.

