Trinity High School
2019 Practice Exam
Paper 1

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\quad \boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}

$$
\text { or } \quad \boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

1. Triangle $A B C$ has vertices $A(4,0)$, $B(-4,16)$ and $C(18,20)$, as shown in the diagram opposite.

Find the equation of the median fror.. -

> Fina the equation ot the mealan tror.

3
2. Express $2 x^{2}+4 x-3$ in the form $a(x+b)^{2}+c$ 3
3. Given that $y=4 \sqrt{x}+\frac{2}{x^{3}}$, find $\frac{d y}{d x}$ 3
4. The functions f and g, defined on suitable domains, are given by

$$
f(x)=\frac{1}{x^{2}-4} \quad \text { and } \quad g(x)=2 x+1
$$

(a) Find an expression for $h(x)$ where $h(x)=g(f(x))$. Give your answer as a single fraction.

$$
3
$$

(b) State a suitable domain for h.
5. Part of the graph of $y=f(x)$ is shown in the diagram.

On separate diagrams, sketch the graphs of:
5
(i) $y=f(x-1)$
(ii) $\quad y=-f(x)-2$
6. A function, g, is defined by $g(x)=x^{2}+8$, where $x \in R$

Determine an expression for $g^{-1}(x)$ 3
7. Given that $f(x)=5(7-2 x)^{3}$, find $f^{\prime}(4)$ 3
8. Solve $8-2 x-x^{2}>0$
9. The points A and B have coordinates $(8,4)$ and $(2,-6)$ respectively.
a. Find the equation of the circle which has $A B$ as its diameter.

3

A tangent to the circle is drawn at (10,-4).
b. Establish the equation of this tangent.
10. Evaluate $\log _{5} 2+\log _{5} 50-\log _{5} 4$

3
11. The diagram shows a sketch of the graph of $y=f(x)$, where $f(x)=a \log _{2}(x-b)$.

Find the values of a and b.

12. Find the range of values of k for which the equation $k x^{2}-x-1=0$ has no real roots.
13. Show that the line with equation $y=4 x-2$ is a tangent to the circle $x^{2}+y^{2}-12 x-10 y+44=0$ and state the coordinates of the point of contact. 5
14. A sequence is defined by the recurrence relation

$$
u_{n+1}=\frac{1}{4} u_{n}+16, u_{0}=0 .
$$

a. Calculate the values of u_{1}, u_{2} and u_{3}.
b. (i) Explain why this sequence approaches a limit as $\mathrm{n} \rightarrow \infty$ 1
(ii) Calculate the exact value of this limit 2
15. The diagram shows part of the graph of $y=g(x)$. The function has stationary points at $(0,4)$ and $(5,-4)$.
 3
16. A curve has equation $y=x-\frac{16}{\sqrt{x}}, \quad x>0$

Find the equation of the tangent at the point where $x=4$.

End of question paper

