Trinity High School

2019 Practice Exam

Paper 1

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae: $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\sin 2A = 2\sin A \cos A$ $\cos 2A = \cos^2 A - \sin^2 A$ $= 2\cos^2 A - 1$ $= 1 - 2\sin^2 A$

Table of standard derivatives:

f(x)	f'(x)
$\sin ax$	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x)dx$
$\sin ax$	$-\frac{1}{a}\cos ax + C$
cosax	$\frac{1}{a}\sin ax + C$

3

2. Express $2x^2 + 4x - 3$ in the form $a(x + b)^2 + c$

3. Given that
$$y = 4\sqrt{x} + \frac{2}{x^3}$$
, find $\frac{dy}{dx}$

4. The functions f and g, defined on suitable domains, are given by

$$f(x) = \frac{1}{x^2 - 4}$$
 and $g(x) = 2x + 1$

(a) Find an expression for h(x) where h(x) = g(f(x)). Give your answer as a single fraction. **3**

(b) State a suitable domain for h.

5. Part of the graph of y = f(x) is shown in the diagram.

1

On separate diagrams, sketch the graphs of: **5**

(i) y = f(x - 1)

(ii) y = -f(x) - 2

6. A function, g, is defined by $g(x) = x^2 + 8$, where $x \in R$ Determine an expression for $g^{-1}(x)$ **3**

7. Given that $f(x) = 5(7 - 2x)^3$, find f'(4) 3

8. Solve $8 - 2x - x^2 > 0$

- 9. The points A and B have coordinates (8,4) and (2,-6) respectively.
 - a. Find the equation of the circle which has AB as its diameter.

A tangent to the circle is drawn at (10,-4).

b. Establish the equation of this tangent.

10. Evaluate $log_5 2 + log_5 50 - log_5 4$

11. The diagram shows a sketch of the graph of y = f(x), where

$$f(x) = a \log_2(x-b) \, .$$

Find the values of a and b.

3

3

12. Find the range of values of k for which the equation $kx^2 - x - 1 = 0$ has no real roots. **3**

13. Show that the line with equation y = 4x - 2 is a tangent to the circle $x^2 + y^2 - 12x - 10y + 44 = 0$ and state the coordinates of the point of contact. **5**

14. A sequence is defined by the recurrence relation

$$u_{n+1} = \frac{1}{4}u_n + 16, \ u_0 = 0.$$

a. Calculate the values of u_1 , u_2 and u_3 .

2

- b. (i) Explain why this sequence approaches a limit as $n \to \infty$ 1
 - (ii) Calculate the exact value of this limit2

15. The diagram shows part of the graph of y = g(x).

The function has stationary points at (0,4) and (5,-4).

16. A curve has equation $y = x - \frac{16}{\sqrt{x}}, x > 0$ Find the equation of the tangent at the point where x = 4. **6** End of question paper