ZETA MATHS
 National 5 Mathematics

 Homework Exercises Unit 3 \& Revision APPLICATIONS AND COURSE REVISION
© ZETA MATHS LTD.

The contents of this book are copyright of Zeta Maths Limited and are for the use of the pupils and teachers of the licensed school only. The book may be printed or photocopied for the use of those to whom it is licensed and it may also be posted on a secured website for digital use. If photocopying this book, ensure that this page is attached.

Note that if posting the book digitally as a pdffile, this may only be via a website that is only accessible by staff and pupils of the licensed school (such as Glow or Edmodo).

It is prohibited to digitally copy or to edit any part of this book, any photocopies or prints produced must contain the copyright and licensing information.

It is prohibited to post this book on an unsecured website that is accessible via the public domain.

INTRODUCTION

The aim of this book is to support learners in their pursuit of excellence in mathematics. Curriculum for Excellence offers learners breadth in learning; this resource is intended to assist learners in developing depth and consolidation of skills.

The resource can be used in a variety of ways: It may be used systematically as learners work through the book progressively doing each of the four exercises from each homework on consecutive days of the week, or it may be used in a more flexible way. This book follows a unit-byunit approach to National 5 mathematics. The contents page is intended for learners and teachers to keep track of progress through the resource. Learners may use a traffic light system for each of the exercises to monitor progression through each of the experiences and outcomes.

Homework	Contents	Ex 1	Ex 2	Ex 3	Ex 4
1	Triangle Trigonometry				
2	Triangle Trigonometry				
3	Triangle Trigonometry with Bearings				
4	Vectors 1				
5	Vectors 2-3D Vectors				
6	Percentages - Increase/Decrease, Percentages in Reverse				
7	Percentages - Compound Interest				
8	Percentages - Compound Interest, Percentages in Reverse				
9	Fractions - Adding and Subtracting				
10	Fractions - Multiplying and $\mathcal{D i v i d i d i n g}^{\text {d }}$				
11	Statistics - Standard $\mathcal{D e}^{\text {e viation and Boxplots }}$				
12	Scattergraphs - Line of Best \mathcal{F} it				
13	Mixed Applications				
14	Mixed Applications				
15	Mixed Applications				
16	Mixed Applications				
17	E\&F Revision				
18	Relationships Revision				
19	Applications Revision				
20	E\&F Revision				
21	Relationships Revision				
22	E\&F Revision				
23	Relationships Revision				
24	Applications Revision				
25	E\&F Revision				
26	Relationships Revision				
27	E\&F Revision				
28	Relationships Revision				
29	Applications Revision				
30	Relationships Revision				
31	E\&F Revision				
32	Relationships Revision				
33	E\&F Revision				
34	Relationships Revision				
35	Applications Revision				
36	Relationships Revision				
37	E\&F Revision				
38	Relationships Revision				

Exercise 1	Exercise 2
1. Use the sine rule to find x a. 6.	1. Ulse the sine rule to find x a. 6 .
2. Ule the cosine rule to side χ a. 6.	2. Use the cosine rule to side χ a. 6.
3. Calculate the area of the triangles in question 2.	3. Calculate the area of the triangles in question 2.
4. Use the cosine rule to find angle x a. 6.	4. Use the cosine rule to find angle x a. 6.
Exercise 3	Exercise 4
1. Use the sine rule to find x a. 6 .	1. Ulse the sine rule to find x a. 6.
2. Use the cosine rule to side χ a.	2. Ulse the cosine rule to side χ a. 6 .
3. Calculate the area of the triangles in question 2.	3. Calculate the area of the triangles in question 2.
4. Ulse the cosine rule to find angle x a. 6.	4. Ule the cosine rule to find angle x a. 6.

[^0]Exercise

[^1]

Applications	Irigonometry $-\mathcal{B e}$ arings $\operatorname{Problems}$

1. Draw a diagram representing:
(a) $a+b$
(6) $\boldsymbol{b}-\boldsymbol{c}$
(c) $c-d$
2. Write each of the vectors above in component form
3. Using the component form above, find
(a) $\boldsymbol{b}+\boldsymbol{d}$
(b) $\boldsymbol{c}-\boldsymbol{a}$
(c) $\boldsymbol{d}-\boldsymbol{b}$
(d) $2 a+c$
(e) $3 b-3 d$
(f) $4 d+2 a$

Exercise 3

1. Draw a diagram representing:
(a) $a+b$
(6) $\boldsymbol{b}+\boldsymbol{c}$
(c) $\boldsymbol{c}-\boldsymbol{d}$
2. Write each of the vectors above in component form
3. Ulsing the component form above, find
(a) $\boldsymbol{b}+\boldsymbol{d}$
(b) $c-a$
(c) $\boldsymbol{d}-\boldsymbol{b}$
(d) $2 a+c$
(e) $3 b-3 d$
(f) $4 d+2 a$

Exercise 2

1. Draw a diagram representing:
(a) $\boldsymbol{a}+\boldsymbol{b}$
(6) $c+b$
(c) $d-c$
2. Write each of the vectors above in component form
3. Using the component form above, find
(a) $a+d$
(6) $b-c$
(c) $c+b$
(d) $2 b+d$
(e) $3 d-3 a$
(f) $4 a-2 c$

Exercise 4

1. Draw a diagram representing:
(a) $\boldsymbol{a}+\boldsymbol{b}$
(b) $c+b$
(c) $d-b$
2. Write each of the vectors above in component form
3. Ulsing the component form above, find
(a) $\boldsymbol{a}+\boldsymbol{d}$
(6) $\boldsymbol{b}-\boldsymbol{c}$
(c) $c+\boldsymbol{b}$
(d) $3 a+2 d$
(e) $2 c-3 d$
(f) $4 b-5 c$

Applications	Vectors

Exercise 1

In the cuboid below, \mathcal{G} is the point $(8,5,6)$

1. Find the position vectors for:
(a) \mathcal{H}
(b) C
(c) \mathcal{A}
2. Write the following vectors in component form:
(a) $\overline{\mathcal{D E}}$
(6) $\overline{E F}$
(c) $\mathcal{D G}$
3. Calculate the magnitude of $\mathcal{D G}$, giving your answer to 1 decimal place.

Exercise 3

In the cuboid Gelow, \mathcal{D} is the point (1, 1, 0) and \mathcal{G} is $(5,2,4)$

1. Find the position vectors for:
(a) \mathcal{H}
(6) C
(c) \mathcal{A}
2. Write the following vectors in component form:
(a) $\mathcal{D E}$
(b) $E F$
(c) $\mathcal{D G}$
3. Calculate the magnitude of $\mathcal{D G}$, giving your answer to 1 decimal place.

Exercise 2

In the cuboid below, \mathcal{D} is the point $(2,2,0)$ and \mathcal{G} is $(6,3,2)$

1. Find the position vectors for:
(a) \mathcal{H}
(b) C
(c) \mathcal{A}
2. Write the following vectors in component form:
(a) $\overrightarrow{\mathcal{D} E}$
(6) $\overrightarrow{F E}$
(c) $\overrightarrow{\mathcal{D G}}$
3. Calculate the magnitude of $\mathcal{D G}$, giving your answer to 1 decimal place.

Exercise 4

In the cuboid below, \mathcal{D} is the point $(-2,-2,0)$ and \mathcal{G} is $(8,6,6)$

1. Find the position vectors for:
(a) \mathcal{H}
(b) C
(c) \mathcal{A}
2. Write the following vectors in component form:
(a) $\mathcal{D E}$
(6) $F E$
(c) $\mathcal{G D}$
3. Calculate the magnitude of $\mathcal{D G}$, giving your answer to 1 decimal place.

Applications	Vectors

Exercise 1

1. S teve bought a car for $£ 16,500$ and sold it two years later for $\pm 12,000$. Calculate the percentage depreciation to 1 decimal place.
2. A yacht increased in value from $\pm 220,000$ to $\pm 260,000$. Calculate this increase as a percentage to 1 decimalplace.
3. A suit was reduced in the sale $6 y 15 \%$ to ± 80.75. Calculate the original price of the suit.
4. A house increased in value by 20% to $\pm 240,000$. Calculate the original value of the house before the rise.
5. A bottle manufacture reduced the volume of their Gottles by 24% to 228 ml . Calculate the original volume of the bottles.
6. Trainers are reduced by 30% to $£ 42$ in a sale. Calculate the ir original price.

Exercise 3

1. Susan bought a car for $£ 20,900$ and sold it two years later for $\pm 14,000$. Calculate the percentage depreciation to 1 decimal place.
2. Iamal's coin collection increased in value from ± 320 to ± 450. Calculate this increase as a percentage to 1 decimal place.
3. Adress was reduced in the sale by 60% to $£ 33$. Calculate the original price of the dress.
4. A fouse increased in value by 23% to $\pm 147,600$. Calculate the original value of the house before the rise.
5. A bottle manufacture increased the volume of the ir Gottles 6y 8% to 216 ml . Calculate the original volume of the bottles.
6. Trainers are reduced by 45% to ± 35.75 in a sale. Calculate the ir original price.

Exercise 2

1. Zainab bought an $X-6$ ox for $£ 500$ and sold it two years later for ± 180. Calculate the percentage depreciation.
2. A fouse increased in value from $£ 120,000$ to $\pm 166,000$. Calculate this increase as a percentage to 1 decimal place.
3. A scarf was reduced in the sale by 18% to ± 6.56. Calculate the original price of the scarf.
4. A motorbike depreciated by 40% to ± 7560. Calculate the original value of the motorbike.
5. A crisp manufacture reduced the weight of the ir crisp packets by 4% to $38 g$. Calculate the original weight to 1 decimal place
6. A phone contract is reduced by 12% to ± 12 per month. Calculate its original price.

Exercise 4

1. Calum bought a PS 3 for ± 400 and sold it three years later for ± 80. Calculate the percentage depreciation.
2. An antique increased in value from $£ 500$ to ± 700. Calculate this increase as a percentage.
3. A necklace was reduced in the sale by 32% to ± 61.20. Calculate the original price of the neсKlace.
4. A motorbike depreciated by 92% to ± 1120. Calculate the original value of the motorbike.
5. A crisp manufacture reduced the weight of the ir crisp packets $6 y 6 \%$ to 47 g . Calculate the original we ight.
6. A phone contract is reduced by 18% to ± 13.12 per month. Calculate its original price.
Applications \quad Percentages -Increase/Decrease, Percentages in Reverse

Exercise 1

1. Zach le aves ± 2300 in his bank for 3 years. The rate of interest is paid at 4% per annum. Calculate howmuchinterest Zach is due after 3 years.
2. A boat was purchased for $£ 36,000$. The value fell by 2% after the first year and then by 5% for the next two years. How much is the boat worth after 3 years?
3. The population of bees in a farm is rising by 2.3% per annum. If the original population was 240,000, calculate the population after 5 years.
4. A car was purchased for $\pm 24,000$. The value of the car depreciated by 6.7% for 4 years. Find the value of the car after 4 years.

Exercise 2

1. Lauren leaves ± 4500 in her bankfor 2 years. The rate of interest is paid at 3% per annum. Calculate howmuch interest Lauren is due after 2 years.
2. A boat was purchased for $\pm 48,000$. The value fell $6 y 6 \%$ after the first year and then $6 y 11 \%$ for the next two years. Howmuch is the boat worth after 3 years?
3. The population of bees in a farm is rising by 1.8 \% per annum. If the original population was 360,000, calculate the population after 4 years.
4. A car was purchased for $\pm 22,000$. The value of the car depreciated $6 y 12.3 \%$ for 5 years. Find the value of the car after 5 years.

Exercise 4

1. Tony leaves ± 54000 in fis bank for 3 years. The rate of interest is paid at 2.09% per annum. Calculate fow much interest Tony is due after 3 years.
2. A caravan was purchased for $£ 42600$. The value fell by 9% after the first ye ar and then by 14 \% for the next two years. How much is the caravan worth after 3 years?
3. The population of bees in a farm is rising $6 y$ 14.03% per annum. If the original population was $2,800,000$, calculate the population after 3 years.
4. A car was purchased for $£ 64000$. The value of the car depreciated by 12.8% for 5 years. Find the value of the car after 5 years.
[^2]
Exercise 1

1. Calculate the compound interest on these bank accounts:
a. $£ 3000$ invested at 4% p.a, 2 years
2. $£ 22000$ invested at 2.03% p.a, 4 years
c. $£ 560$ invested at 1.2% p.a, 3 years
d. $\$ 4000$ invested 10.04% p.a, 5 years
3. A suit was reduced in the sale by 15% to ± 216.75. Calculate the original price of the suit.
4. A fouse increased in value by 20% to $\pm 264,000$. Calculate the original value of the house before the rise.
5. An ae rosol manufacture reduced the volume of the ir tin cans by 14% to 314 ml . Calculate the original volume to 4 significant figures.

Exercise 2

1. Calculate the compound interest on these bank accounts:
a. $£ 7000$ invested at 5% p.a, 3 years
2. $£ 31000$ invested at 4.09% p.a, 2 years
c. $£ 217$ invested at 0.98% p.a, 4 years
d. $\$ 3000$ invested 9.003% p.a, 3 years
3. \mathcal{A} suit was reduced in the sale by 12% to ± 340. Calculate the original price of the suit.
4. A fouse increased in value by 17% to $\pm 125,000$. Calculate the original value of the house before the rise.
5. An aerosolmanufacture reduced the volume of the ir tin cans by 10% to 305 ml . Calculate the original volume to 4 significant figures.

Exercise 4

1. Calculate the compound interest on these bank accounts:
a. $£ 5000$ invested at 2% p.a, 3 years
2. $£ 45000$ invested at 3.08% p.a, 2 years
c. ± 720 invested at 0.6% p.a, 3 years
d. $\$ 12000$ invested 8.105% p.a, 4 years
3. A suit was reduced in the sale by 25% to ± 250. Calculate the original price of the suit.
4. A fouse increased in value by 42% to $\pm 132,000$. Calculate the original value of the house before the rise.
5. An aerosol manufacture reduced the volume of the ir tin cans $6 y 6 \%$ to 288 ml . Calculate the original volume to 4 significant figures.

Exercise 1

1. Add or subtract the following fractions:
a. $\frac{1}{5}+\frac{2}{5}$
2. $\frac{1}{2}+\frac{1}{3}$
c. $2 \frac{1}{3}+3 \frac{2}{5}$
d. $8 \frac{7}{8}-5 \frac{1}{4}$
e. $6 \frac{1}{5}-2 \frac{2}{3}$
f. $\frac{13}{4}+5 \frac{1}{3}$
3. A bodybuilder weighed $14 \frac{3}{4}$ stones. After training, fis weight increased by $2 \frac{1}{3}$ stones. Find fis ne we weight.
4. The length of a pipe was $6 \frac{4}{5}$ metres long. $1 \frac{1}{2}$ metres was cut from the length. Find the new length of the pipe.

Exercise 3

1. Add or subtract the following fractions:
a. $\frac{2}{9}+\frac{3}{9}$
2. $\frac{1}{7}+\frac{1}{8}$
c. $3 \frac{1}{2}+5 \frac{2}{5}$
d. $5 \frac{7}{12}-2 \frac{1}{4}$
e. $7 \frac{1}{2}-3 \frac{3}{5}$
f. $\frac{10}{3}+4 \frac{1}{4}$
3. A bodybuilder weighed $15 \frac{2}{5}$ stones. After training, fis weight increased by $1 \frac{1}{3}$ stones. Find fis ne w we ight.
4. The length of a pipe was $6 \frac{4}{5}$ metres long. $1 \frac{1}{2}$ metres was cut from the length. Find the new length of the pipe.

Exercise 2

1. Add or subtract the following fractions:
a. $\frac{2}{7}+\frac{3}{7}$
2. $\frac{2}{3}+\frac{1}{8}$
c. $7 \frac{1}{6}+4 \frac{1}{5}$
d. $4 \frac{8}{9}-1 \frac{1}{2}$
e. $9 \frac{1}{4}-2 \frac{5}{6}$
f. $\frac{12}{5}+2 \frac{1}{4}$
3. A bodybuilder weighed $16 \frac{1}{3}$ stones. After training, his weight increased by $2 \frac{1}{4}$ stones. Find his ne we weight.
4. The length of a pipe was $5 \frac{6}{7}$ metres long. $1 \frac{1}{2}$ metres was cut from the length. Find the new length of the pipe.

Exercise 4

1. Add or subtract the following fractions:
a. $\frac{3}{11}+\frac{6}{11}$
2. $\frac{1}{7}+\frac{1}{2}$
c. $5 \frac{1}{2}+6 \frac{2}{9}$
d. $5 \frac{6}{7}-2 \frac{3}{14}$
e. $8 \frac{1}{3}-3 \frac{4}{5}$
f. $\frac{11}{2}+2 \frac{3}{4}$
3. A Godybuilder weighed $16 \frac{1}{4}$ stones. After training, his weight increased by $1 \frac{3}{8}$ stones. Find his ne we weight.
4. The length of a pipe was $8 \frac{5}{12}$ metres long. $3 \frac{1}{4}$ metres was cut from the length. Find the new length of the pipe.

Applic ations	\mathcal{F} ractions $-\mathcal{A d}$ ding and Subtracting

Exercise 1

1. Multiply or divide the following fractions and simplify:
a. $\frac{1}{5} \times \frac{2}{3}$
2. $\frac{5}{7} \times \frac{14}{25}$
c. $\frac{11}{3} \times 2 \frac{1}{4}$
d. $3 \frac{1}{2} \times 2 \frac{1}{6}$
e. $\frac{1}{5} \div \frac{1}{3}$
f. $\left.\frac{5}{9} \right\rvert\, \frac{2}{3}$
g. $\left.4 \frac{1}{2} \right\rvert\, 1 \frac{3}{4}$
h. $\left.5 \frac{2}{5} \right\rvert\, 3 \frac{1}{4}$
3. Arectangle is $5 \frac{1}{3}$ metres long by $3 \frac{1}{2}$ metres wide. Calculate the area.
4. Calculate the perimeter of the rectangle in question 2 .

Exercise 3

1. Multiply or divide the following fractions and simplify:
a. $\frac{1}{7} \times \frac{2}{9}$
b. $\frac{6}{25} \times \frac{10}{21}$
c. $\frac{5}{2} \times 4 \frac{1}{3}$
d. $5 \frac{1}{4} \times 3 \frac{1}{2}$
e. $\left.\frac{1}{3} \right\rvert\, \frac{1}{7}$
f. $\left.\frac{7}{8} \right\rvert\, \frac{3}{4}$
f. $\left.3 \frac{2}{5} \right\rvert\, 2 \frac{1}{2}$
g. $\left.5 \frac{1}{5} \right\rvert\, 2 \frac{2}{3}$
2. A rectangle is $10 \frac{1}{2}$ metres long $6 y 6 \frac{1}{5}$ metres wide. Calculate the area.
3. Calculate the perimeter of the rectangle in question 2.

Exercise 2

1. Multiply or divide the following fractions and simplify:
a. $\frac{1}{4} \times \frac{3}{8}$
2. $\frac{3}{8} \times \frac{12}{27}$
c. $\frac{9}{2} \times 3 \frac{1}{5}$
d. $7 \frac{1}{3} \times 3 \frac{5}{6}$
e. $\left.\frac{1}{7} \right\rvert\, \frac{1}{9}$
f. $\left.\frac{6}{7} \right\rvert\, \frac{1}{4}$
f. $\left.6 \frac{3}{8} \right\rvert\, 2 \frac{2}{3}$
g. $\left.2 \frac{1}{3} \right\rvert\, 1 \frac{1}{5}$
3. Arectangle is $6 \frac{1}{4}$ metres long by $2 \frac{1}{3}$ metres wide. Calculate the area.
4. Calculate the perimeter of the rectangle in question 2 .

Exercise 4

1. Multiply or divide the following fractions and simplify:
a. $\frac{1}{8} \times \frac{3}{7}$
2. $\frac{10}{21} \times \frac{14}{30}$
c. $\frac{8}{5} \times 3 \frac{1}{4}$
d. $2 \frac{1}{7} \times 3 \frac{1}{4}$
e. $\frac{2}{3} \left\lvert\, \frac{1}{10}\right.$
$\left.f . \frac{6}{7} \right\rvert\, \frac{12}{13}$
g. $\left.4 \frac{1}{2} \right\rvert\, 1 \frac{3}{4}$
3. $\left.5 \frac{2}{5} \right\rvert\, 3 \frac{1}{4}$
4. A rectangle is $5 \frac{1}{3}$ metres long $6 y 1 \frac{1}{2}$ metres wide. Calculate the area.
5. Calculate the perimeter of the rectangle in question 2.

Exercise 1

1. For each of the number sets, find the quartiles and semi-interquartile range:
a. $2,4,6,9,10,12,18,24$
2. $6,3,7,2,12,8,5,9,11$
c. $\quad 20,24,18,36,29,31,22$
3. Calculate the mean and standard deviation for the following sets of numbers:
a. $\quad 5,6,8,9$
4. $2,4,3,8,5,8$
5. Construct a boxplot for the numbers below:
a. $\quad 5,12,18,24,28,30$

Exercise 2

1. For each of the number sets, find the quartiles and semi-interquartile range:
a. $6,9,10,11,15,18,19,20,23,26$
2. $\quad 10,1,5,6,7,9,4$
c. $\quad 104,97,83,86,81,100,94,90$
3. Calculate the mean and standard de viation for the following sets of numbers:
a. $\quad 2,6,13,15$
4. $8,3,4,9,10,8$
5. Construct a boxplot for the numbers below:

$$
\text { a. } \quad 7,10,12,16,18,20,24,26
$$

Exercise 4

1. For each of the number sets, find the quartiles and semi-interquartile range:
a. $\quad 10,14,18,20,28,30,35,42,44,46$
2. $\quad 20,18,15,22,26,14$
c. $\quad 0.4,2.1,0.9,1.7,0.8,1.1,0.6,1.3$
3. Calculate the me an and standard de viation for the following sets of numbers:
$\begin{array}{ll}\text { a. } & 2,8,10,16 \\ \text { b. } & 10,4,13,5,7,9\end{array}$
4. Construct a boxplot for the numbers below:
a. $\quad 50,54,60,72,88,96,98$

Exercise 1

$\mathcal{B e}$ low is a scattergraph with a line of best fit, representing rainfall and ice-cream sales on certain days

1. Describe the relationsfip between the two categories
2. Point \mathcal{A} is $(5,200)$ and \mathcal{B} is $(20,50)$, find the equation of the line of best fit
3. Ulse your equation to calculate fow many ice. cream sales there would be if there were 25 mm of rainfall

Exercise 3

Be low is a scattergrapf with a line of best fit, representing matfs and physics class test results

1. Describe the relationsfip between the two categories
2. Point \mathcal{A} is $(20,30)$ and \mathcal{B} is $(50,66)$, find the equation of the line of best fit
3. Ulse your equation to calculate the physics score if someone were to score 75 in maths

Exercise 2

$\mathcal{B e}$ low is a scattergraph with a line of best fit, representing a waiter's pay and sales on certain days in a restaurant

1. Describe the relationsfip between the two categories
2. Point \mathcal{A} is $(10,60)$ and \mathcal{B} is $(40,120)$, find the equation of the line of best fit
3. Ulse your equation to calculate fow the waiter would earn if they were to make 55 sales

Exercise 4

$\mathcal{B e}$ low is a scattergrapf with a line of best fit, representing temperature and suncream sales

1. Describe the relationsfip between the two categories
2. Point \mathcal{A} is $(8,20)$ and \mathcal{B} is $(26,56)$, find the equation of the line of best fit
3. Use your equation to calculate the sun cream sales if the temperature was 34°

Applications	Scattergraphs - Line of $\mathcal{B e s t}$ Fit

Exercise 1

1. At $2 p m$ the temperature of a liquid is $72^{\circ} \mathrm{C}$. The temperature is increasing by 3.6% every hour. Find the temperature at 5 pm .
2. For the triangle, calculate the missing side x.

3. Calculate the are a of the triangle in question 2.
4. Simplify the following fractions (no calculator):
a. $3 \frac{1}{5} \times 4 \frac{1}{2}$
5. $\left.6 \frac{2}{3} \right\rvert\, 2 \frac{1}{2}$
6. For the list of numbers below, find the mean and standard deviation:

$$
7,4,8,5,1
$$

Exercise 3

1. At 3 pm the temperature of a liquid is $26^{\circ} \mathrm{C}$. The temperature is increasing by 1.02% every four. Find the temperature at 8 pm .
2. For the triangle, calculate the missing side χ.

3. Calculate the area of the triangle in question 2.
4. Simplify the following fractions (no calculator):
a. $5 \frac{1}{4} \times 2 \frac{1}{3}$
5. $\left.6 \frac{2}{3} \right\rvert\, 2 \frac{1}{2}$
6. For the list of numbers below, find the mean and standard deviation:

$$
9,10,5,11,13,6
$$

Exercise 2

1. At 8 pm the temperature of a liquid is $51^{\circ} \mathrm{C}$. The temperature is increasing by 2.9% every hour. Find the temperature at midnight.
2. For the triangle, calculate the missing side χ.

3. Calculate the area of the triangle in question 2.
4. Simplify the following fractions (no calculator):
a. $3 \frac{1}{3} \times 2 \frac{1}{5}$
5. $\left.4 \frac{1}{4} \right\rvert\, 2 \frac{1}{3}$
6. For the list of numbers below, find the me an and standard deviation:

$$
8,10,4,6,9,5
$$

Exercise 4

1. At 9am the temperature of a liquid is $38^{\circ} \mathrm{C}$. The temperature is increasing by 9.1% every hour. Find the temperature at 2 pm .
2. For the triangle, calculate the missing angle x.

3. Calculate the area of the triangle in question 2.
4. Simplify the following fractions (no calculator):
a. $1 \frac{1}{5} \times 3 \frac{1}{6}$
5. $\left.8 \frac{3}{8} \right\rvert\, 6 \frac{1}{4}$
6. For the list of numbers below, find the me an and standard deviation:
$130,160,175,220,150$

Applications \quad Mixed Exercise

Exercise 1

1. A jacket was reduced in the sale by 24% to ± 106.40. Calculate the original price of the jacket.
2. The coordinate of points \mathcal{A} and \mathcal{B} are $(2,0,3)$ and $(5,-1,2)$ respectively. Find the components of vector $\mathcal{A B}$.
3. Find the magnitude of vector $\mathcal{A B}$ to 1.d.p
4. For the series of numbers below, find the quartiles and the $I Q R$.

$$
6,4,9,3,6,8,10,5
$$

5. Calculate the length of the missing side χ

Exercise 3

1. A fouse increased in value by 18% to $\pm 260,000$. Calculate the original price of the house.
2. The coordinate of points \mathcal{A} and \mathcal{B} are (1, 1, -4) and $(0,-3,5)$ respectively. Find the components of vector $\mathcal{A B}$.
3. Find the magnitude of vector $\mathcal{A B}$ to 1.d.p
4. For the series of numbers below, find the quartiles and the SIQR.

$$
2,3,1,6,3,8,7,5,4
$$

5. Calculate the length of the missing side χ

Exercise 2

1. A bag was reduced in the sale by 14% to E68.80. Calculate the original price of the 6 ag.
2. The coordinate of points \mathcal{A} and \mathcal{B} are (3, 2, -2) and $(6,-1,1)$ respectively. Find the components of vector $\mathfrak{A B}$.
3. Find the magnitude of vector $\mathcal{A B}$ to 1.d.p
4. For the series of numbers below, find the quartiles and the IQR.

$$
5,1,8,6,4,8,11
$$

5. Calculate the length of the missing side χ

Exercise 4

1. A car increased in value by 4% to $\pm 19,136$. Calculate the original price of the car.
2. The coordinate of points \mathcal{A} and \mathcal{B} are (8, 2, -2) and $(7,-3,-5)$ respectively. Find the components of vector $\overrightarrow{\mathcal{A B}}$.
3. Find the magnitude of vector $\mathcal{A B}$ to 1.d.p
4. For the series of numbers below, find the quartiles and the SIQR.
$10,11,13,11,15,14,11,10,9,11$
5. Calculate the length of the m issing angle x

Applications \quad Mixed Exercise

Exercise 1

1. Water is evaporating from a jar $6 y 8.2 \%$ every hour. At 6 pm there were 120 ml of water in the jar. Find the volume at 9 pm .
2. For the triangle, calculate the missing side χ.

3. Calculate the are a of the triangle in question 2.
4. Simplify the following fractions (no calculator):
a. $2 \frac{1}{3} \times 3 \frac{1}{7}$
5. $\left.8 \frac{1}{4} \right\rvert\, 2 \frac{1}{5}$
6. For the list of numbers below, find the me an and standard deviation:
```
9,4,3,6,8
```


Exercise 2

1. Water is evaporating from a jar by 2.1% every hour. At 3 pm there were 180 ml of water in the jar. Find the volume at 7 pm .
2. For the triangle, calculate the missing side χ.

3. Calculate the are a of the triangle in question 2.
4. Simplify the following fractions (no calculator):
a. $1 \frac{1}{6} \times 2 \frac{1}{3}$
5. $\left.6 \frac{1}{2} \right\rvert\, 2 \frac{1}{4}$
6. For the list of numbers below, find the mean and standard deviation:

$$
1,2,3,1,2
$$

Exercise 4

1. Water is evaporating from a jar by 0.8% every four. At 8 pm there were 200 ml of water in the jar. Find the volume at midnight.
2. For the triangle, calculate the missing angle x.

3. Calculate the area of the triangle in question 2.
4. Simplify the following fractions (no calculator):
a. $1 \frac{2}{9} \times 2 \frac{1}{2}$
5. $\left.10 \frac{1}{2} \right\rvert\, 2 \frac{1}{8}$
6. For the list of numbers below, find the me an and standard deviation:

$$
22,24,36,40,28
$$

Applications	Mixed Exercise

Exercise 1

1. A scarf was reduced in the sale by 15% to ± 23.80. Calculate the original price of the scarf.
2. The coordinate of points \mathcal{A} and \mathcal{B} are $(1,5,0)$ and (2,-2,3) respectively. Find the components of vector $\mathcal{A B}$
3. Find the magnitude of vector $\mathcal{A B}$ to 1.d.p
4. For the series of numbers below, find the quartiles and the $I Q \mathcal{R}$.

$$
4,9,8,2,3,1,4,10
$$

5. Calculate the length of the missing side χ

Exercise 3

1. A frouse increased in value by 12% to $\pm 324,800$ Calculate the original price of the fouse.
2. The coordinate of points \mathcal{A} and \mathcal{B} are (3,-2,-1) and (1, 1, 4) respectively. Find the components of vector $\mathcal{A B}$.
3. Find the magnitude of vector $\mathcal{A B}$ to 1.d.p
4. For the series of numbers below, find the quartiles and the $S I Q R$.

$$
2,1,3,1,3,4,5,3,2,5,7
$$

5. Calculate the length of the missing side χ

Exercise 2

1. A fiat was reduced in the sale by 22% to ± 28.08. Calculate the original price of the fat.
2. The coordinate of points \mathcal{A} and \mathcal{B} are (1, $0,-5$) and (4,-1, 1) respectively. Find the components of vector $\mathfrak{A B}$.
3. Find the magnitude of vector $\mathcal{A B}$ to 1.d.p
4. For the series of numbers below, find the quartiles and the IQR.

$$
6,1,3,7,8,3,4,3,2
$$

5. Calculate the length of the missing side χ

Exercise 4

1. A car increased in value $6 y 6 \%$ to $£ 28,620$. Calculate the original price of the car.
2. The coordinate of points \mathcal{A} and \mathcal{B} are $(5,6,2)$ and $(-1,-2,-1)$ respectively. Find the
components of vector $\overrightarrow{\mathcal{A B}}$.
3. Find the magnitude of vector $\mathcal{A B}$ to 1.d.p
4. For the series of numbers below, find the quartiles and the SIQR.

$$
5,7,2,4,8,2,1,2,5,7
$$

5. Calculate the length of the m issing angle x

Applications \quad Mixed Exercise

Exercise 1

1. Find the gradient of line passing through the points $(6,17)$ and (10, -1).
2. Simplify: (a) $\frac{4 x^{2}-100}{x^{2}-6 x+5}$ (b) $\frac{6}{x}+\frac{2}{x+3}$
3. The two shapes have the same volume when rounded to 2 significant figures. Find the radius of the hemisphere

4. (a) Simplify: $\frac{x^{3} \times\left(x^{2}\right)^{4}}{x^{9}}$
(6) Hence evaluate when $x=-3$
5. Find the radius

Area of sector $=60 \mathrm{~cm}^{2}$

Exercise 3

1. Find the gradient of line passing through the points $(-10,2)$ and $(4,36)$.
2. Simplify: (a) $\frac{x^{2}-x-6}{x^{2}-9}$
(6) $\left.\frac{x}{x-5} \right\rvert\, \frac{1}{x-2}$
3. The two shapes have the same volume when rounded to 2 signific ant figures. Find the radius of the hemisphere

20 cm
4. (a) Simplify: $\left(x^{\frac{3}{4}}\right)^{4} \times x^{-\frac{7}{2}}$
(6) Hence evaluate when $x=16$
5. Find the radius

Exercise 2

1. Find the gradient of line passing through the points $(5,-4)$ and $(9,-1)$.
2. Simplify: (a) $\frac{4 x^{2}-36}{2 x^{2}-4 x-6}$ (b) $\frac{5}{x}-\frac{2}{x-2}$
3. The two shapes fiave the same volume when rounded to 2 significant figures. Find the radius of the hemisphere

4. (a) Simplify: $\frac{x^{5} \times\left(x^{4}\right)^{\frac{1}{2}}}{x^{3}}$
(6) Hence evaluate when $x=-2$
5. Find the radius

Length of arc $=130 \mathrm{~cm}$

Exercise 4

1. Find the gradient of line passing through the points $(-20,6)$ and $(10,46)$.
2. Simplify: (a) $\frac{3 x^{2}-12}{5 x^{2}-20}$ (6) $\frac{5 x}{x-5} \left\lvert\, \frac{4}{x^{2}}\right.$
3. The two shapes have the same volume when rounded to 2 signific ant figures. Find the radius of the femisphere

(a) Simplify: $\left(x^{\frac{1}{2}}\right)^{4} \times x^{-\frac{3}{2}}$
(b) Hence evaluate when $x=25$
4. Find the radius

Length of arc $=50 \mathrm{~cm}$

$\mathcal{E} \mathfrak{G F}$	Revision

Exercise 1

1. A straight line fias the equation $2 y+4 x=6$, find:
(a) the gradient
(6) the point where the line crosses the y-axis
(c) the point where the line crosses the χ-axis
2. Given that $f(x)=6-x^{2}$, evaluate:
(a) $f(5)$
(b) $f(-2)$
3. Express $x^{2}+6 x-2$ in the form $(x-a)^{2}+6$
4. The grapf belowrepresents $y=k \mathcal{X}^{2}$, find ' \mathcal{K} '

Exercise 3

1. A straigft line fas the equation $5 y-25 x=-10$, find:
(a) the gradient
(6) the point where the line crosses the y-axis
(c) the point where the line crosses the χ-axis
2. Given that $f(x)=-8+\chi^{2}$, evaluate:
(a) $f(0)$
(b) $f(-4)$
3. Express $x^{2}+12 x-9$ in the form $(x-a)^{2}+6$
4. The graph belowrepresents $y=k x^{2}$

Exercise 2

1. A straight line fas the equation $4 y-8 x=-12$, find:
(a) the gradient
(b) the point where the line crosses the y-axis
(c) the point where the line crosses the χ-axis
2. Given that $f(x)=x^{2}-4 x-1$, evaluate:
(a) $f(5)$
(b) $f(-3)$
3. Express $x^{2}-8 x+2$ in the form $(x-a)^{2}+b$
4. The graph below represents $y=k x^{2}$

Exercise 4

1. A straigft line fas the equation $-y-9 x=6$, find:
(a) the gradient
(6) the point where the line crosses the y-axis
(c) the point where the line crosses the x-axis
2. Given that $f(x)=6-x^{2}+5 x$, evaluate:
(a) $f(-1)$
(b) $f(-2)$
3. Express $x^{2}+6 x-7$ in the form $(x-a)^{2}+6$
4. The graph below represents $y=k x^{2}$

[^3]
Exercise 1

1. Two forces acting on a ball are represented by vectors a and b

$$
a=\left(\begin{array}{c}
3 \\
-2 \\
5
\end{array}\right) \quad 6=\left(\begin{array}{c}
6 \\
2 \\
-8
\end{array}\right)
$$

Find the magnitude of the force $|a+b|$, giving your answer as a surd in its simplest form.
2. A property increases in value from $£ 82,000$ to $\pm 96,000$, express this increase as a percentage.
3. A company invests $£ 45,000$ at an interest rate of 4.2% for 5 years. Calculate the interest gained.
4. For the following data set:

$$
43,43,52,32,54,42,53,41
$$

(a) Find the standard deviation to 1 decimal place
(6) Produce a five figure summary
(c) Find the interquartile range.

Exercise 3

1. Two forces acting on a ball are represented by vectors a and 6

$$
a=\left(\begin{array}{c}
7 \\
1 \\
-2
\end{array}\right) \quad 6=\left(\begin{array}{c}
-3 \\
-2 \\
3
\end{array}\right)
$$

Find the magnitude of the force $|a+\sigma|$, giving your answer as a surd in its simplest form.
2. A property increases in value from $\pm 410,000$ to $\pm 450,000$, express this increase as a percentage.
3. A company invests $\pm 92,000$ at an interest rate of 2.1% for 3 years. Calculate the interest gained.
4. For the following data set:
$1001,1002,1000,999,998,1005$
(a) Find the standard deviation to 1 decimal place
(6) Produce a five figure summary
(c) Find the interquartile range.

Exercise 2

1. Two forces acting on a ball are represented by vectors a and 6

$$
a=\left(\begin{array}{c}
4 \\
6 \\
-8
\end{array}\right) \quad b=\left(\begin{array}{c}
-2 \\
-1 \\
3
\end{array}\right)
$$

Find the magnitude of the force $|a+\sigma|$, giving your answer as a surd in its simplest form.
2. A property increases in value from $\pm 101,000$ to $\pm 104,000$, express this increase as a percentage.
3. A company invests $£ 68,000$ at an interest rate of 3.7% for 4 years. Calculate the interest gained.
4. For the following data set:
$99,101,106,104,103,103,110,100$
(a) Find the standard deviation to 1 decimal place
(6) Produce a five figure summary
c) Find the interquartile range.

Exercise 4

1. Two forces acting on a ball are represented by vectors a and 6

$$
a=\left(\begin{array}{l}
5 \\
1 \\
0
\end{array}\right) \quad \sigma=\left(\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right)
$$

Find the magnitude of the force $|a+\sigma|$, giving your answer as a surd in its simplest form.
2. A property increases in value from $\pm 125,000$ to $\pm 158,000$, express this increase as a percentage.
3. A company invests $£ 25,000$ at an interest rate of 2.8% for 5 years. Calculate the interest gained.
4. For the following data set:
$56,59,61,68,42,57,56,59,60$
(a) Find the standard deviation to 1 decimal place
(6) Produce a five figure summary
(c) Find the interquartile range.

Applications	Revision

Exercise 1

1. Find the gradient of line passing through the points $(6,18)$ and $(10,19)$.
2. Simplify: (a) $\frac{4 x^{2}-16}{x^{2}-4 x-12}$ (b) $\frac{4}{x^{2}}+\frac{2}{x-1}$
3. The two shapes have the same volume when rounded to 2 signific ant figures. Find the radius of the hemisphere

$7 c m$
4. (a) Simplify: $\frac{x \times\left(x^{4}\right)^{5}}{x^{18}}$
(6) Hence evaluate when $x=-2$
5. Find the radius $\begin{aligned} & \text { Are a of sector } \\ & =55 \mathrm{~cm}^{2}\end{aligned}$

Exercise 3

1. Find the gradient of line passing through the points $(10,12)$ and $(-2,9)$.
2. Simplify: (a) $\frac{3 x^{2}-3 x-18}{3 x^{2}-27}$ (6) $\frac{2 x}{x-2}-\frac{5}{x+2}$
3. The two shapes have the same volume when rounded to 2 signific ant figures. Find the radius of the hemisphere

25 cm
4. (a) Simplify: $\left(x^{\frac{5}{6}}\right)^{2} \times x^{-\frac{5}{3}}$
(6) Hence evaluate when $x=25$
5. Find the radius

Exercise 2

1. Find the gradient of line passing through the points (1,-3) and (12, 23).
2. Simplify: (a) $\frac{5 x^{2}-125}{x^{2}-3 x-10}$ (b) $\frac{6}{x}+\frac{7}{x+2}$
3. The two shapes have the same volume when rounded to 2 signific ant figures. Find the radius of the hemisphere

4. (a) Simplify: $\frac{x^{4} \times\left(x^{3}\right)^{\frac{1}{6}}}{x^{3}}$
(6) Hence evaluate when $x=3$
5. Find the radius

Length of arc $=180 \mathrm{~cm}$

Exercise 4

1. Find the gradient of line passing through the points $(-17,16)$ and $(-3,9)$.
2. Simplify: (a) $\frac{8 x^{2}-32}{5 x^{2}-20}$ (b) $\frac{3 x}{x-3}-\frac{4}{-x^{2}}$
3. The two shapes have the same volume when rounded to 2 signific ant figures. Find the radius of the hemisphere

(a) Simplify: $\left(x^{\frac{1}{2}}\right)^{6} \times x^{-\frac{4}{3}}$
(6) Hence evaluate when $x=2$
4. Find the radius
 Length of arc $=56 \mathrm{~cm}$

$\mathcal{E} \mathfrak{G F}$	Revision

Exercise 1

1. Find the equation of the line joining the two points: $(3,6),(6,18)$
2. Solve

$$
\text { (a) } \frac{2}{3}(w-5)=\frac{1}{4}(w+6)
$$

(6) $5(2 x-4) \leq 3(3 x+5)$
3. Sotve alge braically:

$$
\begin{aligned}
& 2 a+3 b=5 \\
& 4 a-2 b=-14
\end{aligned}
$$

4. The diagram represents a water pipe. If the diameter of the pipe is 10 mm and the surface of the water is 8 mm across, find the depth of the water.

Exercise 2

1. Find the equation of the line joining the two points: $(3,6),(6,12)$
2. Solve

$$
\text { (a) } \frac{4}{3}(w-2)=\frac{1}{3}(w+8)
$$

(b) $4(2 x+3) \leq 2(x+8)$
3. Solve alge braically:

$$
\begin{aligned}
& 3 a+46=5 \\
& 4 a-3 b=-10
\end{aligned}
$$

4. The diagram represents a water pipe. If the diameter of the pipe is 26 mm and the surface of the water is 24 mm across, find the depth of the water.

Exercise 4

1. Find the equation of the line joining the two points: $(2,5),(4,1)$
2. Solve
(a) $\frac{4}{3}(w+1)=\frac{1}{2}\left(w_{-} 6\right)$
(6) $7(2 x-3) \leq 2\left(2 x-\frac{1}{2}\right)$
3. Solve alge braically:

$$
\begin{aligned}
& 4 a+6=10 \\
& 5 a-3 b=21
\end{aligned}
$$

4. The diagram represents a water pipe. If the radius of the pipe is 13 cm and the surface of the water is 10 cm across, find the depth of the water.

10 cm

Relationsfips \quad Revision

Exercise 1

1．Multiply out the brackets and simplify：
（a）$(x+2)^{3}$
（6） $4 x(x-2)-2(x-5)$

2．Factorise：
（a） $2 x^{2}-98$
（6） $2 x^{2}-5 x-3$

3．Find the angle of the sector：

4．Rationalise the denominator：

（a）$\frac{2}{\sqrt{5}}$
（6）$\frac{1}{\sqrt{8}}$

5．Simplify：
（a）$\frac{2 a^{4}}{5 b^{4}} \times \frac{106}{9 a^{2}}$
（6） $6 a^{\frac{1}{2}} x\left(3 a^{4}\right)^{2}$

Exercise 3

1．Multiply out the brackets and simplify：
（a）$(x+4)^{3}$
（6）$-x(x-1)+3(x-4)$

2．Factorise：
（a） $5 x^{2}-125$
（6） $2 x^{2}+5 x-3$

3．Find the angle of the sector：

4．Rationalise the denominator：

（a）$\frac{3}{\sqrt{2}}$
（6）$\frac{8}{\sqrt{12}}$

5．Simplify：
（a）$\frac{27 a^{4}}{5 b^{4}} \times \frac{10 b^{3}}{9 a^{3}}$（b）$\frac{1}{4} a^{\frac{1}{2}} x\left(2 a^{4}\right)^{3}$

Exercise 2

1．Multiply out the brackets and simplify：
（a）$(x-1)^{3}$
（6） $2 x(x+3)-2(x+1)$

2．Factorise：
（a） $4 x^{2}-16$
（6） $2 x^{2}-2 x-12$

3．Find the angle of the sector：

4．Rationalise the denominator：

（a）$\frac{4}{\sqrt{7}}$
（b）$\frac{1}{\sqrt{5}}$

5．Simplify：
（a）$\frac{4 a^{3}}{b^{4}} \times \frac{9 b}{12 a^{2}}$
（b） $7 a^{\frac{1}{3}} x\left(3 a^{2}\right)^{2}$

Exercise 4

1．Multiply out the brackets and simplify：
（a）$(x-4)^{3}$
（6）$-2 x(x+2)-3(x-6)$

2．Factorise：
（a） $3 x^{2}-147$
（b） $2 x^{2}-9 x+9$

3．Find the angle of the sector：

4．Rationalise the denominator：

（a）$\frac{25}{\sqrt{3}}$
（6）$\frac{5}{\sqrt{20}}$

5．Simplify：
（a）$\frac{5 a^{4}}{b^{3}} \times \frac{10 b^{6}}{4 a^{2}} \quad$（b）$\frac{1}{16} a^{\frac{1}{2}} x\left(4 a^{5}\right)^{2}$

Exercise 1

1. Solve the following equations grapfically:

$$
\begin{aligned}
& y=2 x-4 \\
& 2 x+y=2
\end{aligned}
$$

2. Solve
(a) $y=2 x^{2}+4 x$
(b) $y=x^{2}+2 x-8$
3. Sketch the quadratic $y=(x-3)^{2}-3$ (showing where the graph cuts the y-axis)
4. Find the equation of the trig graph

Exercise 3

1. Solve the following equations graphic ally:

$$
\begin{aligned}
& y=5 x-6 \\
& 7 x-3 y=2
\end{aligned}
$$

2. Solve
(a) $y=12 x^{2}+24 x$
(6) $y=x^{2}-1 x-12$
3. Sketcf the quadratic $y=(x-4)^{2}+5$ (sfowing where the graph cuts the y-axis)
4. Find the equation of the trig graph

Exercise 2

1. Solve the following equations grapfic ally:

$$
\begin{aligned}
& y=-1 x+3 \\
& 4 x-6 y=-8
\end{aligned}
$$

2. Solve
(a) $y=3 x^{2}+9 x$
(6) $y=x^{2}-4 x-12$
3. Sketch the quadratic $y=(x-4)^{2}-2$ (showing where the graph cuts the y-axis)
4. Find the equation of the trig grapf

Exercise 4

1. Solve the following equations grapfic ally:

$$
\begin{aligned}
& y=-3 x-8 \\
& 6 x-5 y=-2
\end{aligned}
$$

2. Solve
(a) $y=16 x^{2}+48 x$
(b) $y=x^{2}+x-6$
3. Sketch the quadratic $y=(x-5)^{2}-5$ (showing where the grapf cuts the y-axis)
4. Find the equation of the trig graph

Relationsfips \quad Revision

Exercise 1

1. In the cuboid below the \mathcal{C} is the point $(0,4,0)$ and \mathcal{H} is $(9,0,5)$

(a) Find the coordinates of \mathcal{A}, \mathcal{F} and \mathcal{G}
(6) Find $\mathcal{B G}$
(c) Find the magnitude of $\mathcal{C H}$
2. The diagram represents a line of best fit for a scattergraph, \mathcal{A} is $(30,100) \mathcal{B}$ is $(90,600)$ (a) Find the equation of the line.

(6) Use the equation to find y when $x=250$

Exercise 2

1. In the cuboid below the \mathcal{B} is the point (-1,-1, 7) and \mathcal{F} is $(10,6,0)$

(a) Find the coordinates of \mathcal{A}, \mathcal{D} and \mathcal{G}
(6) Find $\mathcal{B G}$
(c) Find the magnitude of $\mathfrak{A E}$
2. The diagram represents a line of best fit for a scattergraph, \mathcal{A} is $(200,100) \mathcal{B}$ is $(600,200)$
(a) Find the equation of the Sine.

(6) Use the equation to find y
when $x=350$

Exercise 4

1. In the cuboid below the C is the point ($-8,-2,-1$) and \mathcal{H} is $(4,-10,9)$

(a) Find the coordinates of \mathcal{A}, \mathcal{F} and \mathcal{G}
(b) Find $\mathcal{B G}$
(c) $\mathcal{F i n d}$ the magnitude of $\subset \mathcal{H}$
2. The diagram represents a line of best fit for a scattergraph, \mathcal{A} is $(65,150) \mathcal{B}$ is $(78,195)$ (a) Find the equation of the line.

(6) Use the equation to find y
when $x=210$

Applic ations	Revision

Exercise 1

1. The tube of balls below has radius 8 cm . Find the volume of:
(a) a ball (b) the tube (c) the empty space

2. Find $\left(3.6 \times 10^{7}\right) \times\left(4.65 \times 10^{8}\right)$
3. The cube and the cylinder fiave the same volume when rounded to 2 significant figures. Calculate the radius of the cylinder

4. Write $356,000,000$ in scientific notation
5. Factorise $3 x^{2}-7 x+4$

Exercise 3

1. The tube of balls below has radius 10 cm . Find the volume of:
(a) a ball (6) the tube (c) the empty space

2. Find $\left(5.01 \times 10^{4}\right) \times\left(6.66 \times 10^{5}\right)$
3. The cube and the cylinder have the same volume when rounded to 2 signific ant figures. Calculate the radius of the cylinder

4. Write 407,000 in scientific notation
5. Factorise $2 x^{2}-2 x-4$

Exercise 2

1. The tube of balls below has radius 6 cm . Find the volume of:
(a) a ball (6) the tube (c) the empty space

2. Find $\left(4.2 \times 10^{6}\right) \times\left(4.36 \times 10^{7}\right)$
3. The cube and the cylinder have the same volume when rounded to 2 significant figures. Calculate the radius of the cylinder

4. Write 45,900,000 in scientific notation
5. Factorise $2 x^{2}+5 x-3$

Exercise 4

1. The tube of Galls below has radius 15 cm . Find the volume of:
(a) a ball (6) the tube (c) the empty space

2. Find $\left(6.06 \times 10^{8}\right) \times\left(2.85 \times 10^{10}\right)$
3. The cube and the cylinder have the same volume when rounded to 2 significant figures. Calculate the radius of the cylinder

4. Write $26,010,000,000$ in scientific notation
5. Factorise $2 \chi^{2}-5 x-12$

ÉHF	Revision

Exercise 1

1. Sketch the graph $y=(x-3)(x+5)$ (showing the turning point, roots and y-intercept)
2. Change the subject:

$$
\begin{equation*}
\mathcal{V}=\frac{1}{3} \pi r^{2} \hbar \tag{k}
\end{equation*}
$$

3. Determine the equation of the straight line:

4. Solve $y=x^{2}+3 x-18$
5. Sketch the graph of $y=2 \cos 3 x$

Exercise 2

1. Sketch the graph $y=(x-2)(x-3)$ (showing the turning point, roots and y-intercept)
2. Change the subject:

$$
\begin{equation*}
\mathcal{V}=\frac{1}{3} \pi r^{2} \hbar \tag{r}
\end{equation*}
$$

3. Determine the equation of the straight line:

4. Solve $y=x^{2}+2 x-8$
5. Sketch the graph of $y=3 \cos 2 x+4$

Exercise 3

1. Sketch the graph $y=(x-4)(x+2)$ (showing the turning point, roots and y-intercept)
2. Change the subject:

$$
R=x^{2}(m+n) \quad[n]
$$

3. Determine the equation of the straight line:

4. Solve $y=x^{2}+2 x-24$
5. Sketch the graph of $y=-2 \sin 3 x+2$

Exercise 4

1. Sketch the graph $y=(x+3)(x+6)$ (showing the turning point, roots and y-intercept)
2. Change the subject:

$$
n=\frac{t w+3}{3 y}
$$

[w]
3. Determine the equation of the straight line:

4. Solve $y=x^{2}-12 x-45$
5. SKetch the graph of $y=-5 \sin 4 x-6$
Relationsfips \quad Revision

Exercise 1

1. Find the gradient of line passing through the points $(7,16)$ and $(9,12)$.
2. Simplify: (a) $\frac{x^{2}-9}{x^{2}+x-6}$ (b) $\frac{x}{x-2}-\frac{2}{x+3}$
3. Find the volume of the shape.

4. Simplify:
(a) $\sqrt{50}+\sqrt{18}$
(6) $\frac{x^{3} \times\left(x^{2}\right)^{4}}{x^{2}}$
5. Find the radius

Exercise 3

1. Find the gradient of line passing through the points $(6,24)$ and $(-9,36)$.
2. Simplify: (a) $\frac{x^{2}-1-12}{x^{2}-16}$ (b) $\frac{x}{x-5}+\frac{1}{x-2}$
3. Find the volume of the shape.

4. Simplify:
(a) $5 \sqrt{75}-5 \sqrt{147}$
(6) $\frac{x^{9} \times\left(x^{3}\right)^{5}}{x^{5}}$
5. Find the radius

Exercise 2

1. Find the gradient of line passing through the points $(-4,16)$ and $(-10,-8)$.
2. Simplify: (a) $\frac{3 x+9}{x^{2}-2 x-15}$
(b) $\frac{2 x}{x-1}-\frac{1}{x+3}$
3. Find the volume of the shape.

4. Simplify:
(a) $3 \sqrt{12}+3 \sqrt{27}$
(6) $\frac{x \times x^{8}}{\left(x^{2}\right)^{4}}$
5. Find the radius

Exercise 4

1. Find the gradient of line passing through the points $(8,4)$ and $(10,4)$.
2. Simplify: (a) $\frac{5 x^{2}-45}{x^{2}+x-6}$ (b) $\frac{3 x}{x-3}+\frac{x}{x-4}$
3. Find the volume of the shape.

4. Simplify:
(a) $6 \sqrt{750}-12 \sqrt{120}$
(6) $\frac{\left(x^{3}\right)^{7} \times x^{8}}{x^{13}}$
5. Find the radius

Exercise 1

1. \mathcal{A} straight line fias the equation $5 y-15 x=-6$, find:
(a) the gradient
(6) the point where the line crosses the y-axis
(c) the point where the line crosses the x-axis
2. Given that $f(x)=9+x^{2}$, evaluate:
(a) $f(-3)$
(b) $f(-1)$
3. Express $\chi^{2}+4 x-6$ in the form $(x-a)^{2}+6$
4. The graph belowrepresents $y=k x^{2}$, find ${ }^{\prime}$ '

Exercise 3

1. A straight line fias the equation $7 y-21 x=-28$, find:
(a) the gradient
(6) the point where the line crosses the y-axis
(c) the point where the line crosses the x-axis
2. Given that $f(x)=-12+2 x^{2}$, evaluate:
(a) $f(3)$
(b) $f(-2)$
3. Express $x^{2}+10 x-3$ in the form $(x-a)^{2}+6$
4. The grapf belowrepresents $y=k \chi^{2}$

Exercise 2

1. A straight line fias the equation $12 y-2 x=-8$, find:
(a) the gradient
(6) the point where the line crosses the y-axis
(c) the point where the line crosses the x-axis
2. Given that $f(x)=x^{2}-6 x-5$, evaluate:
(a) $f(-1)$
(6) $f(2)$
3. Express $\chi^{2}-8 x+3$ in the form $(x-a)^{2}+6$
4. The graph below represents $y=k x^{2}$

Exercise 4

1. A straight line fas the equation $-2 y-6 x=-6$, find:
(a) the gradient
(6) the point where the line crosses the y-axis
(c) the point where the line crosses the x-axis
2. Given that $f(x)=12-x^{2}-x$, evaluate:
(a) $f(4)$
(b) $f(6)$
3. Express $x^{2}+4 x+9$ in the form $(x-a)^{2}+6$
4. The graph belowrepresents $y=k x^{2}$

Relationsfips \quad Revision

Exercise 1

1. Two forces acting on a ball are represented by vectors a and 6

$$
a=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) \quad b=\left(\begin{array}{c}
7 \\
-1 \\
-3
\end{array}\right)
$$

Find the magnitude of the force $|a+\sigma|$, giving your answer as a surd in its simplest form.
2. A property increases in value from $£ 73,000$ to $\pm 86,000$, express this increase as a percentage.
3. A company invests $\pm 26,000$ at an interest rate of 3.1% for 4 years. Calculate the interest gained.
4. For the following data set:

$$
24,43,72,32,54,72,53,31
$$

(a) Find the standard de viation to 1 decimal place
(b) Produce a five figure summary
(c) Find the interquartile range.

Exercise 3

1. Two forces acting on a ball are represented by vectors a and b

$$
a=\left(\begin{array}{c}
8 \\
7 \\
-3
\end{array}\right) \quad 6=\left(\begin{array}{c}
-10 \\
2 \\
5
\end{array}\right)
$$

Find the magnitude of the force $|a+\sigma|$, giving your answer as a surd in its simplest form.
2. A property increases in value from $£ 450,000$ to $\pm 470,000$, express this increase as a percentage.
3. A company invests $£ 105,000$ at an interest rate of 8.1% for 5 years. Calculate the interest gained.
4. For the following data set:
$1021,1000,1030,999,997,1015$
(a) Find the standard deviation to 1 decimal place
(6) Produce a five figure summary
(c) Find the interquartile range.

Exercise 2

1. Two forces acting on a ball are represented by vectors a and 6

$$
a=\left(\begin{array}{c}
7 \\
5 \\
-3
\end{array}\right) \quad b=\left(\begin{array}{c}
-4 \\
6 \\
4
\end{array}\right)
$$

Find the magnitude of the force $|a+\sigma|$, giving your answer as a surd in its simplest form.
2. A property increases in value from $£ 201,000$ to $\pm 204,000$, express this increase as a percentage.
3. A company invests $£ 35,000$ at an interestrate of 6.3% for 2 years. Calculate the interest gained.
4. For the following data set:

$$
99,90,106,106,103,143,110,120
$$

(a) Find the standard deviation to 1 decimal place
(6) Produce a five figure summary
(c) Find the interquartile range.

Exercise 4

1. Two forces acting on a ball are represented by vectors a and 6

$$
a=\left(\begin{array}{l}
0 \\
5 \\
1
\end{array}\right) \quad b=\left(\begin{array}{c}
-5 \\
-2 \\
3
\end{array}\right)
$$

Find the magnitude of the force $|a+\sigma|$, giving your answer as a surd in its simplest form.
2. A property increases in value from $£ 176,000$ to $\pm 198,000$, express this increase as a percentage.
3. A company invests $£ 400,000$ at an interest rate of 12.8% for 3 years. Calculate the interest gained.
4. For the following data set:

$$
54,56,61,68,42,67,56,49,61
$$

(a) Find the standard deviation to 1 decimal place
(b) Produce a five figure summary
(c) Find the interquartile range

Applications \quad Revision

Exercise 1

1. Solve $y=x^{2}-7 x-4$ to 1 decimalplace
2. The two shapes are similar, find the volume of the larger bottle in ml:

3. There are 100 seats on a coach; some are first class and the rest standard class. The first class seats cost ± 50 and the standard ± 35, if when they are all sold they cost ± 3800, find how many of each seat there are.
4. Solve $3 \sin x+2=0$ for $0 \leq x \leq 360$
5. Sketch the graph of $y=3 \cos (x+30)$
6. Determine the nature of the roots of $y=x^{2}-4$

Exercise 3

1. Solve $y=x^{2}+9 x-4$ to 1 decimal place
2. The two shapes are similar, find the volume of the larger bottle in ml

500 ml

3. There are 80 seats on a coach; some are first class and the rest standard class. The first class seats cost ± 120 and the standard ± 70, if when they are all sold they cost ± 6350, find how many of each seat there are.
4. Solve $4 \tan x+8=0$ for $0 \leq x \leq 360$
5. Sketch the graph of $y=-2 \cos x+1$
6. Determine the nature of the roots of $y=5 x^{2}$

Exercise 2

1. Solve $y=2 x^{2}-8 x-7$ to 1 decimalplace
2. The two shapes are similar, find the volume scale factor and the volume of the larger shape:

$50 \mathrm{~cm}^{3}$
3. There are 250 seats on a train; some are first class and the rest standard class. The first class seats cost ± 80 and the standard ± 32, if when they are all sold they cost $\pm 10,400$, find how many of each seat there are.
4. Solve $2 \cos x-1=0$ for $0 \leq x \leq 360$
5. Sketch the graph of $y=4 \sin x+3$
6. Determine the nature of the roots of $y=x^{2}+4$

Exercise 4

1. Solve $y=3 x^{2}-15 x-3$ to 1 decimalplace
2. The two shapes are similar, find the volume scale factor and the volume of the larger shape:

$30 \mathrm{~cm}^{3}$
3. There are 350 seats on a train; some are first class and the rest standard class. The first class seats cost $£ 220$ and the standard $£ 150$, if when they are all sold they cost $\pm 57,750$, find how many of each seat there are.
4. Solve $9 \sin x+5=0$ for $0 \leq x \leq 360$
5. SKetch the graph of $y=2 \sin (x-30)$
6. Determine the nature of the roots of $y=x^{2}+12$

Relationsfips	Revision

Exercise 1

1. The cylinder below has a radius of 6 cm and a hemisphere cut out of the Gottom. Find the volume of the shape in litres (give your answer to 2 significant figures)

2. Find $\left(6 \times 10^{-7}\right) \times\left(4.65 \times 10^{-5}\right)$
3. The cube has a volume of 4 litres. Find the length of one of its sides to the nearest whole number.

4. Write 0.0000638 in scientific notation
5. Factorise $3 x^{2}-7 x+4$

Exercise 3

1. The cylinder below has a radius of 9 cm and a hemisphere cut out of the bottom. Find the volume of the shape in litres (give your answer to 2 significant figures)

2. Find $\left(63 \times 10^{-9}\right) \times\left(2.75 \times 10^{-8}\right)$
3. The cube has a volume of 25 fitres. Find the length of one of its sides to the nearest whole number.

4. Write 0.0000456 in scientific notation
5. Factorise $3 x^{2}-4 x+1$

Exercise 2

1. The cylinder below fas a radius of 4 cm and a hemisphere cut out of the bottom. Find the volume of the shape in litres (give your answer to 2 significant figures)

2. Find $\left(7 \times 10^{4}\right) \times\left(9.15 \times 10^{-9}\right)$
3. The cube has a volume of 16 litres. Find the length of one of its sides to the nearest whole number.

4. Write 0.00007912 in scientific notation
5. Factorise $2 x^{2}-7 x+3$

Exercise 4

1. The cylinder below fas a radius of 10 cm and a hemisphere cut out of the bottom. Find the volume of the shape in litres (give your answer to 2 significant figures)

2. Find $\left(9 \times 10^{-8}\right) \times\left(7.32 \times 10^{-4}\right)$
3. The cube has a volume of 5 litres. Find the length of one of its sides to the nearest whole number.

4. Write 0.0000745 in scientific notation
5. Factorise $2 \chi^{2}+x-1$

É̛F	Revision

Exercise 1

1. Find the equation of the line joining the two points: $(3,15),(6,-30)$
2. Solve

> (a) $\frac{1}{8}(w-4)=\frac{1}{2}(w-3)$
> (b) $-4(x+4) \leq 2(3 x-4)$
3. Solve alge braic ally:

$$
\begin{aligned}
& -8 a-5 b=-7 \\
& 3 a+12 b=33
\end{aligned}
$$

4. The diagram represents a water pipe. If the diameter of the pipe is 10 mm and the surface of the water is 6 mm across, find the depthof the water.

6 mm

Exercise 3

1. Find the equation of the line joining the two points: $(8,1),(4,-2)$
2. Solve
(a) $\frac{4}{6}(w-2)=\frac{1}{2}(w-1)$
(b) $-8\left(x-\frac{1}{2}\right) \leq 4(x+4)$
3. Solve alge braic ally:

$$
\begin{aligned}
& 9 a+5 b=12 \\
& 4 a-2 b=18
\end{aligned}
$$

4. The diagram represents a water pipe. If the diameter of the pipe is 10 mm and the surface of the water is 8 mm across, find the depthof the water.

Exercise 2

1. Find the equation of the line joining the two points: $(11,-8),(7,-12)$
2. Solve

$$
\text { (a) } \frac{3}{2}(w-4)=\frac{1}{3}(w+6)
$$

(6) $9(x-3) \leq-4(x-8)$
3. Solve alge 6 raic ally:

$$
\begin{aligned}
& -12 a-8 b=0 \\
& 5 a+3 b=1
\end{aligned}
$$

4. The diagram represents a water pipe. If the diameter of the pipe is 30 mm and the surface of the water is 24 mm across, find the depth of the water.

Exercise 4

1. Find the equation of the line joining the two points: $(3,12),(-4,26)$
2. Solve
(a) $\frac{1}{2}(w+4)=\frac{1}{5}(w-1)$
(b) $3(x+12) \leq 2\left(x-\frac{3}{2}\right)$
3. Solve alge fraic ally:

$$
\begin{aligned}
& 7 a-6 b=-27 \\
& 4 a+4 b=-8
\end{aligned}
$$

4. The diagram represents a water pipe. If the radius of the pipe is 15 cm and the surface of the water is 18 cm across, find the depth of the water.

18 cm

Relationsfips \quad Revision

Exercise 1

1. Multiply out the brackets and simplify:
(a) $(x-2)^{3}$
(6) $6 x(x-4)+2(x-3)$
2. Factorise:
(a) $7 x^{2}-63$
(6) $4 x^{2}-5 x+1$
3. Find the angle of the sector:
4. Rationalise the denominator:

(a) $\frac{9}{\sqrt{3}}$
(b) $\frac{1}{\sqrt{2}}$
5. Simplify:
(a) $\frac{24 a^{4}}{6 b^{8}} \times \frac{13 b^{3}}{3 a^{2}} \quad$ (6) $6 a^{\frac{1}{3}} \times\left(3 a^{4}\right)^{3}$

Exercise 3

1. Multiply out the brackets and simplify:
(a) $(x-4)^{3}$
(6) $-5 x(x+1)+4(x-3)$
2. Factorise:
(a) $6 x^{2}-96$
(6) $2 x^{2}+3 x+1$
3. Find the angle of the sector:
4. Rationalise the denominator:

(a) $\frac{13}{\sqrt{3}}$
(6) $\frac{5}{\sqrt{10}}$
5. Simplify:
(a) $\frac{2 a^{9}}{5 b^{14}} \times \frac{16 b^{3}}{8 a^{8}}$
(b) $\frac{1}{8} a^{\frac{1}{4}} \times\left(25 a^{3}\right)^{\frac{1}{2}}$

Exercise 2

1. Multiply out the brackets and simplify:
(a) $(x-7)^{3}$
(6) $7 x(x+1)-3(x+1)$
2. Factorise:
(a) $9 x^{2}-36$
(6) $3 x^{2}-x-2$
3. Find the angle of the sector:

4. Rationalise the denominator:
(a) $\frac{5}{\sqrt{6}}$
(6) $\frac{12}{\sqrt{8}}$
5. Simplify:
(a) $\frac{8 a^{3}}{b^{7}} \times \frac{15 b}{10 a^{6}}$
(b) $7 a^{\frac{1}{3}} x\left(3 a^{2}\right)^{2}$

Exercise 4

1. Multiply out the brackets and simplify:
(a) $(x+5)^{3}$
(6) $-3 x(2 x+1)+3(2 x-1)$
2. Factorise:
(a) $11 x^{2}-99$
(6) $3 x^{2}+5 x-2$
3. Find the angle of the sector:
4. Rationalise the denominator:

(a) $\frac{7}{\sqrt{6}}$
(6) $\frac{4}{\sqrt{24}}$
5. Simplify:
(a) $\frac{8 a^{5}}{6^{9}} \times \frac{14 b^{7}}{4 a^{8}} \quad$ (b) $a^{\frac{1}{12}} \times\left(9 a^{3}\right)^{\frac{1}{2}}$

\square
,

Exercise 1

1. Solve the following equations grapfically:

$$
\begin{aligned}
& y=12 x-8 \\
& 2 x+y=6
\end{aligned}
$$

2. Solve
(a) $y=5 x^{2}+25 x$
(b) $y=x^{2}+5 x-14$
3. Sketch the quadratic $y=(x-2)^{2}-5$ (showing where the grapf cuts the y-axis)
4. Find the equation of the trig graph

Exercise 3

1. Solve the following equations grapfic ally:

$$
\begin{aligned}
& -y=3 x-2 \\
& -x-y=5
\end{aligned}
$$

2. Solve
(a) $y=8 x^{2}-16 x$
(6) $y=x^{2}-1 x-20$
3. SKetch the quadratic $y=(x-3)^{2}+1$ (showing where the graph cuts the y-axis)
4. Find the equation of the trig graph

Exercise 2

1. Solve the following equations grapfic ally:

$$
\begin{aligned}
& y=-5 x+2 \\
& 2 x-y=12
\end{aligned}
$$

2. Solve
(a) $y=6 x^{2}+3 x$
(6) $y=x^{2}-10 x+16$
3. Sketch the quadratic $y=(x+6)^{2}-1$ (sfiowing where the graph cuts the y-axis)
4. Find the equation of the trig grapf

Exercise 4

1. Solve the following equations grapfic ally:

$$
\begin{aligned}
& y=-8 x-4 \\
& x-y=13
\end{aligned}
$$

2. Solve
(a) $y=15 x^{2}+60 x$
(6) $y=x^{2}-6 x+9$
3. Sketch the quadratic $y=(x-4)^{2}+2$ (showing where the graph cuts the y-axis)
4. Find the equation of the trig graph

Relationsfips \quad Revision

Exercise 2

1. In the cuboid below the \mathcal{B} is the point $(-2,-2,7)$ and \mathcal{F} is $(12,8,0)$

(a) Find the coordinates of \mathcal{A}, \mathcal{D} and \mathcal{G}
(6) Find $\mathcal{B} G$
(c) Find the magnitude of $\mathcal{A E}$
2. The diagram represents a line of best fit for a scattergraph, \mathcal{A} is $(300,200) \mathcal{B}$ is $(900,700)$ (a) Find the equation of the Cine.

(6) Use the equation to find y
when $x=3000$

Exercise 4

1. In the cuboid below the C is the point (-9, -4, -5) and \mathcal{H} is $(3,-11,6)$

(a) Find the coordinates of \mathcal{A}, \mathcal{F} and \mathcal{G}
(b) Find $\mathcal{B G}$
(c) Find the magnitude of $\mathcal{C H}$
2. The diagram represents a line of best fit for a scattergraph, \mathcal{A} is $(75,140) \mathcal{B}$ is $(70,190)$ (a) Find the equation of the Cine.

(6) Ulse the equation to find y
when $x=200$

Applic ations	Revision

Exercise 1

1. Solve $y=x^{2}-9 x-4$ to 1 decimalplace
2. The two 6ags are similar, find the volume of the Carger 6ag in ml:

3. At the cine ma 5 adults and 2 children cost $\pm 43.50 ; 4$ adults and 3 childrencost ± 42.50. Find the cost of 1 adult and 1 child.
4. Solve $3 \tan x+2=0$ for $0 \leq x \leq 360$
5. Sketch the graph $y=5 \cos (x+20)$
6. Determine the nature of the roots of $y=4 x^{2}-4$

Exercise 3

1. Solve $y=x^{2}+10 x-4$ to 1 decimalplace
2. The two bags are similar, find the volume of the Carger 6 ag in $m l:$

3000 ml

3. At the cinema 5 adults and 3 children cost ± 62; 3 adults and 3 childrencost ± 45. Find the cost of 1 adult and 1 child.
4. Solve $3 \cos x-2=0$ for $0 \leq x \leq 360$
5. Sketch the graph of $y=5 \sin (x+30)$
6. Determine the nature of the roots of $y=2 x^{2}-4+2$

Exercise 2

1. Solve $y=3 x^{2}-8 x-2$ to 1 decimalplace
2. The two shapes are similar. Find the height of the larger cup to 1 decimal place:

3. At the cinema 3 adults and 4 children cost $\pm 39.80 ; 2$ adults and 3 children cost ± 28.10. Find the cost of 1 adult and 1 child.
4. Solve $4 \sin +2=0$ for $0 \leq x \leq 360$
5. Sketch the graph of $y=-3 \cos (x-50)$
6. Determine the nature of the roots of $y=2 x^{2}-4 x+5$

Exercise 4

1. Solve $y=5 x^{2}+15 x-3$ to 1 decimal place
2. The two shapes are similar. Find the height of the larger cup to 1 decimal place:

fcm

3. At the cine ma 6 adults and 5 children cost ± 74.70; 4 adults and 3 children cost ± 47.70. Find the cost of 1 adult and 1 child.
4. Solve $5 \sin x-2=0$ for $0 \leq x \leq 360$
5. Sketch the graph of $y=-4 \sin (x-40)$
6. Determine the nature of the roots of

$$
y=x^{2}-2 x+3
$$

Relationsfips \quad Revision

Exercise 1

1. Find the gradient of line passing through the points $(11,36)$ and $(9,20)$.
2. Simplify: (a) $\frac{x^{2}-25}{x^{2}-4 x-5}$ (b) $\frac{2 x}{2 x-2}+\frac{2}{x+3}$
3. Find the volume of the shape.

4. Simplify:
(a) $\sqrt{162}+4 \sqrt{2}$
(6) $\frac{x^{9} \times\left(x^{7}\right)^{4}}{x}$
5. Find the length of arc:

Exercise 3

1. Find the gradient of line passing through the points $(-3,45)$ and $(-9,15)$.
2. Simplify: (a) $\frac{x^{2}+x-12}{x^{2}-2 x-24}$
(6) $\frac{-x}{x-1}-\frac{1}{2 x-2}$
3. Find the volume of the shape.

4. Simplify:
(a) $5 \sqrt{242}-9 \sqrt{2}$
(6) $\frac{x^{6} \times\left(x^{3}\right)^{9}}{x^{4}}$
5. Find the length of arc:

Exercise 2

1. Find the gradient of line passing through the points $(-4,-8)$ and (-10, -4).
2. Simplify: (a) $\frac{4 x^{2}+16}{x^{2}-2 x-8}$ (b) $\frac{x}{x+1}-\frac{6}{2 x+3}$
3. Find the volume of the shape.

$$
\text { radius }=3 \mathrm{~cm}
$$

4. Simplify:
(a) $3 \sqrt{192}-3 \sqrt{147}$
(6) $\frac{x^{4} \times x^{7}}{\left(x^{2}\right)^{13}}$
5. Find the are a of sector:

Exercise 4

1. Find the gradient of line passing through the points $(8,9)$ and $(13,-14)$.
2. Simplify: (a) $\frac{6 x^{2}-150}{x^{2}+x-20}$ (b) $\frac{-3 x}{x+3}-\frac{4 x}{x}$
3. Find the volume of the shape.

$$
\text { radius }=12 \mathrm{~cm}
$$

4. Simplify:
(a) $15 \sqrt{7}+5 \sqrt{175}$
(6) $\frac{\left(x^{3}\right)^{7} \times x^{7}}{x^{28}}$
5. Find the area of sector:

$\mathcal{E} \mathfrak{E F}$

Revision

Exercise 1

1. Sketch the grapf $y=(x-4)(x+2)$ (showing the turning point, roots and y-intercept)
2. Change the subject:

$$
q=\frac{1}{3} m r^{2}
$$

$$
[m]
$$

3. Determine the equation of the straight line:

4. Solve $y=x^{2}-7 x+12$
5. Sketch the graph of $y=3 \cos 2 x$

Exercise 2

1. Sketch the graph $y=(x-8)(x-4)$ (showing the turning point, roots and y-intercept)
2. Change the subject:

$$
\mathcal{A}=5 r p h-4 \pi
$$

$$
[n]
$$

3. Determine the equation of the straight line:

4. Solve $y=x^{2}-8 x+16$
5. Sketch the graph of $y=\cos 3 x+1$

Exercise 3

1. Sketch the graph $y=(x-1)(x+3)$ (showing the turning point, roots and y-intercept)
2. Change the subject:

$$
\mathcal{W}=4 \sqrt{m+n} \quad[m]
$$

3. Determine the equation of the straight line:

4. Solve $y=x^{2}+-2 x-15$
5. Sketch the graph of $y=3 \cos 3 x-2$

Exercise 4

1. Sketch the graph $y=(x-7)(x+5)$ (showing the turning point, roots and y-intercept)
2. Change the subject:

$$
\begin{equation*}
k=7 k n^{2}-2 \tag{6}
\end{equation*}
$$

3. Determine the equation of the straight line:

4. Solve $y=x^{2}+9 x+18$
5. Sketch the graph of $y=3 \cos x+3$

Relationsfips	Revision

[^0]: Applications \quad Triangle \mathcal{T} rigonometry

[^1]: Applications \quad Triangle $\mathcal{T r i g o n o m e t r y ~}$

[^2]: Applications \quad Percentages - Compound Interest

[^3]: Relationsfips \quad Revision

