1.1	The Straight Line (APP)	\$	Ð	9
	I know how to find the			
*	distance between 2 points			
	using the Distance Formula			
	or Pythagoras			
	I know how to find			
	gradient from 2 points,			
	angle (m = tan θ) and			
	using the equation of a line			
*	I know that the gradients			
	of parallel lines are equal			
	I can find the equation of a			
*	straight line given 2 points			
	or 1 point and a gradient			
*	I can find the equation of a			
	horizontal or vertical line			
*	I can interpret all equations			
	of a line			
	I can find the gradients of			
	perpendicular lines using			
	$m_1 \times m_2 = -1$			
	I can find the midpoint of 2			
	points			
	I can determine the			
	equation of Altitudes,			
	Medians and			
	Perpendicular Bisectors			
	l can solve problems using			
	properties of Straight Lines			
	including intersections,			
	concurrency and			
	collinearity			
	I can use locus in problems			
	I understand the terms			
	orthocentre, circumcentre			
	and concurrency			
1.0		Л	-	
1.2	Quadratics (KC)			1
	I can determine whether a			
*	quaaratic function has a			
	maximum or minimum			
*	i can complete the square			
	turning of a graph			
	Loop deatch surgerstic			
*	functions			
*	a call solve quadratic			
	L can solve avadratia			
	inequations by skotching			
	the graph of the function			
1		1	1	1

	I know the discriminant is			
*				
	$b^2 - 4ac$			
	I can use the discriminant to			
*	determine the nature of the			
	roots of a quadratic			
	equation			
	I know if the roots of a			
*	quadratic equation are			
	rational or irrational			
*	I can use the discriminant to			
	find co-oefficients given			
	the nature of the roots			
	I can form an equation with			
	given roots			
	I can determine whether a			
	line cuts, touches or does			
	not meet a curve by usina			
	the discriminant			
	I know the conditions for			
	tangency and can find the			
	point of contact			
12	Circle (APD)	es.	1	
1.3	Lince (AFF)	•		V
	the size control (g, h) and			
	T T A C T C A C A T T A C A T T A C A C			
	The circle centre (a,b) and			
	radius r is			
	radius r is $(x-a)^{2} + (y-b)^{2} = r^{2}$			
	radius r is $(x-a)^{2} + (y-b)^{2} = r^{2}$ I know that $x^{2} + y^{2} + 2gx$			
	radius r is $(x-a)^{2} + (y-b)^{2} = r^{2}$ I know that x ² + y ² + 2gx + 2fy + c=0 represents a			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-a, -f) and			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-g, -f) and radius			
	radius r is $(x-a)^{2} + (y-b)^{2} = r^{2}$ I know that $x^{2} + y^{2} + 2gx$ $+ 2fy + c=0$ represents a circle centre (-g, -f) and radius			
	radius r is $(x-a)^{2} + (y-b)^{2} = r^{2}$ I know that $x^{2} + y^{2} + 2gx$ $+ 2fy + c=0$ represents a circle centre (-g, -f) and radius $\sqrt{g^{2} + f^{2} - c}$ provided			
	radius r is $(x-a)^{2} + (y-b)^{2} = r^{2}$ I know that x ² + y ² + 2gx + 2fy + c=0 represents a circle centre (-g, -f) and radius $\sqrt{g^{2} + f^{2} - c}$ provided $g^{2} + f^{2} - c > 0$			
	radius r is $(x-a)^{2} + (y-b)^{2} = r^{2}$ I know that $x^{2} + y^{2} + 2gx$ $+ 2fy + c=0$ represents a circle centre (-g, -f) and radius $\sqrt{g^{2} + f^{2} - c}$ provided $g^{2} + f^{2} - c > 0$			
	radius r is $(x-a)^{2} + (y-b)^{2} = r^{2}$ I know that $x^{2} + y^{2} + 2gx$ $+ 2fy + c=0$ represents a circle centre (-g, -f) and radius $\sqrt{g^{2} + f^{2} - c}$ provided $g^{2} + f^{2} - c > 0$ I can determine the radius and centre of a circle			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a sizele			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can find if/when a line is a tangent is a circle			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can find if/when a line is a tangent to a circle			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can find if/when a line is a tangent to a circle I can determine whether 2			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can find if/when a line is a tangent to a circle I can determine whether 2 circles have 2, 1 or no			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can find if/when a line is a tangent to a circle I can determine whether 2 circles have 2, 1 or no points of intersection			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can find if/when a line is a tangent to a circle I can determine whether 2 circles have 2, 1 or no points of intersection Find the equation of a			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can find if/when a line is a tangent to a circle I can determine whether 2 circles have 2, 1 or no points of intersection Find the equation of a circle from 3 points (on a			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can determine whether 2 circles have 2, 1 or no points of intersection Find the equation of a circle from 3 points (on a semi-circle)			
	radius r is $(x-a)^2 + (y-b)^2 = r^2$ I know that $x^2 + y^2 + 2gx$ + 2fy + c=0 represents a circle centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided $g^2 + f^2 - c > 0$ I can determine the radius and centre of a circle given the equation I can determine the equation of a circle given the centre and radius I can find the equation of a tangent to a circle I can find the point of intersection of a line and a circle I can find if/when a line is a tangent to a circle I can determine whether 2 circles have 2, 1 or no points of intersection Find the equation of a circle from 3 points (on a semi-circle)			

1.4	(APP)	۵	Ð	?
	I can use the notation			
	$u_{n+1} = au_n + b$ to define a			
	recurrence relation			
	I can evaluate previous			
	recurrence relation			
	I can state the conditions			
	for a limit to exist			
	$\lfloor -1 < a < 1 \rfloor$			
	sequence will converge or			
	diverge from its recurrence			
	relation			
	I can evaluate the limit of a			
	h			
	$l = \frac{b}{1-a}$			
	I can solve recurrence			
	relations to find a and b			
	using simultaneous			
	equations			
	relation problems written in			
	context			
	Differentiation (APP +			
1.5	Differentiation (APP + RC)	\$	Ð	
1.5	Differentiation (APP + RC) I can use the notation	۵	-	,
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a	8	P	9
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a	\$		9
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums	\$	B	~
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differences	8		9
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differences I can differentiate negative	\$	•	8
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differences I can differentiate negative and fractional powers	8	•	9
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differences I can differentiate negative and fractional powers I can express in differentiable form and	\$	-\$	8
1.5	Differentiation (APP + RC) I can use the notation f'(x) and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differences I can differentiate negative and fractional powers I can express in differentiable form and differentiate	\$	B	3
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differentiate negative and fractional powers I can express in differentiable form and differentiate I can find the gradient of a	\$		9
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differentiate negative and fractional powers I can express in differentiable form and differentiate I can find the gradient of a point on a curve	\$		~
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differences I can differentiate negative and fractional powers I can express in differentiable form and differentiate I can find the gradient of a point on a curve y = f(x) at $x = aLegen find the project on x$	8		•
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differentiate negative and fractional powers I can express in differentiable form and differentiable form and differentiate I can find the gradient of a point on a curve y = f(x) at $x = aI can find the point on acurve given the aradient$	\$		8
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differentiate negative and fractional powers I can express in differentiable form and differentiate I can find the gradient of a point on a curve y = f(x) at $x = aI can find the point on acurve given the gradientI can find the equation of$	8		•
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differentiate negative and fractional powers I can express in differentiable form and differentiable form and differentiate I can find the gradient of a point on a curve y = f(x) at $x = aI can find the point on acurve given the gradientI can find the equation ofthe tangent to a curve$?
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differentiate sums and differentiate negative and fractional powers I can differentiable form and differentiable form and differentiate I can find the gradient of a point on a curve y = f(x) at $x = aI can find the point on acurve given the gradientI can find the equation ofthe tangent to a curveI know the meaning of rate$			
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differentiate negative and fractional powers I can differentiate negative and fractional powers I can express in differentiable form and differentiable form and differentiate I can find the gradient of a point on a curve y = f(x) at $x = aI can find the point on acurve given the gradientI can find the equation ofthe tangent to a curveI know the meaning of rateof change$	\$		9
1.5	Differentiation (APP + RC) I can use the notation $f'(x)$ and $\frac{dy}{dx}$ for a derivative I can differentiate sums and differentiate sums and differentiate negative and fractional powers I can differentiate negative and fractional powers I can express in differentiable form and differentiate I can find the gradient of a point on a curve y = f(x) at $x = aI can find the point on acurve given the gradientI can find the equation ofthe tangent to a curveI know the meaning of rateof changeI can find the rate ofchange of a function and$			

	I can find where curves are			
	increasing and decreasing			
	I can find stationary points			
	I can determine the nature			
	of stationary points			
	l can sketch a curve given			
	its equation			
	l can solve problems			
	finding areatest and least			
	values using optimisation			
	L can find the maximum			
	and minimum values in a			
	dosad interval			
	Loop skotch the graph of g			
	derived function			
	derived function			
1.6	Integration (APP + RC)	\$	-	9
	I can find the integral of			
	$f(\mathbf{x}) = n\mathbf{x}^n$			
<u> </u>	$\int (x) - px$			
	I can find the integral of			
	sums and differences			
	l can integrate negative			
	and fractional powers			
	l can express in integrable			
	form and integrate			
	l can evaluate definite			
	integrals			
	I can find the area			
	between a curve and the			
	x-axis			
	I know that there are no			
1		1		
	negative areas			
	negative areas			
	I can find the area			
	I can find the area between two curves			
	I can find the area between two curves can solve differential			
	negative areas I can find the area between two curves I can solve differential equations			
	negative areas I can find the area between two curves I can solve differential equations			
	negative areas I can find the area between two curves I can solve differential equations			
	negative areas I can find the area between two curves I can solve differential equations			
	negative areas I can find the area between two curves I can solve differential equations			
	negative areas I can find the area between two curves I can solve differential equations			
	negative areas I can find the area between two curves I can solve differential equations			
2.1	negative areas I can find the area between two curves I can solve differential equations	8	P	?
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on	\$	P	8
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by	\$	P	9
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by (x-h)	8	P	8
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by (x-h) I can find the remainder on	\$	P	9
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by (x-h) I can find the remainder on dividing a polynomial by	8	P	9
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by (x-h) I can find the remainder on dividing a polynomial by (ax+b)	\$		8
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by (x-h) I can find the remainder on dividing a polynomial by (x-h) I can find the remainder on dividing a polynomial by (ax+b)	\$	P	8
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by (x-h) I can find the remainder on dividing a polynomial by (x+b) I can state my answer in	8	6	~
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by (x-h) I can find the remainder on dividing a polynomial by (x+b) I can state my answer in the form	\$	P	~
2.1	negative areas I can find the area between two curves I can solve differential equations Polynomials (RC) I can find the remainder on dividing a polynomial by (x-h) I can find the remainder on dividing a polynomial by (x+b) I can state my answer in the form f(x) = (ax-b)Q(x) + R	\$	*	~
2.1	negative areasI can find the areabetween two curvesI can solve differentialequationsPolynomials (RC)I can find the remainder ondividing a polynomial by $(x-h)$ I can find the remainder ondividing a polynomial by $(x-h)$ I can find the remainder ondividing a polynomial by $(ax+b)$ I can state my answer inthe form $f(x) = (ax-b)Q(x) + R$ I can use the factor	\$		3

	factors of a polynomial			
	I can determine the roots			
	of a polynomial equation			
	I can find a polynomial's			
	unknown coefficients using			
	the factor theorem			
	L can find the intersection			
	of a line and a polynomial			
	of a line and a polynomial			
	I can fina if a line is a			
	tangent to a polynomial			
	I can find the intersection			
	of two polynomials			
	I can prove that an			
	equation has a root			
	between two given values			
	and be able to improve on			
	that			
	l can establish the equation			
	of a polynomial from its			
	graph or when given its			
	roots			
2.2	Sets and Functions (EE)	\$	þ	()
	L can understand and	-		v
	determine the domain and			
	range of a function			
	l ann alatain a farmula far			
	l can obtain a formula for			
	l can obtain a formula for a composite function			
	I can obtain a formula for a composite function I can evaluate a composite			
	I can obtain a formula for a composite function I can evaluate a composite function			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$			
	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$			
2.3	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$ Graphs and functions (EF)	<u></u>		
2.3	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$ Graphs and functions (EF) Sketch and annotate			9
2.3	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$ Graphs and functions (EF) Sketch and annotate related graphs			8
2.3	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$ Graphs and functions (EF) Sketch and annotate related graphs $y = f(x) \pm a$		· · · · · · · · · · · · · · · · · · ·	3
2.3	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$ Graphs and functions (EF) Sketch and annotate related graphs $y = f(x) \pm a$ y = f(x + a)			8
2.3	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$ Graphs and functions (EF) Sketch and annotate related graphs $y = f(x) \pm a$ $y = f(x \pm a)$			9
2.3	I can obtain a formula for a composite function I can evaluate a composite function I can obtain a formula for the inverse of a linear function I can complete the square and use it to find the turning of a graph I know the general features of the exponential and logarithmic function I know that the inverse function of $f(x) = a^x$ is $\log_a x$ Graphs and functions (EF) Sketch and annotate related graphs $y = f(x) \pm a$ $y = f(x) \pm a$ y = -f(x)			9

	y - kf(y)			
	y = k f(x)	-		
	y = f(kx)			
	Sketch and annotate			
	related exponential and			
	logarithmic functions			
	I can determine the			
	equation of exponential			
	and logarithmic functions			
	from their graphs			
0.4	Trimen and the Country			
2.4	Irigonometry: Graphs	\$	Ð	?
	and Functions (EF)			
	I can identify the period			
*	and amplitude of a			
	trigonometric function or			
	graph			
	I know the general			
*	features of Sine and			
	Cosine graphs			
	I can state the equation of			
*	a trigonometric function			
	from its graph			
	I can convert from degrees			
	to radians and vice versa			
	I can determine exact			
*	values			
	I can determine exact			
*	values in all 4 augdrants			
	Lean solve problems using			
	avant values			
	I can solve equations of the			
	type			
	f(x) = g(x) graphically			
	l can solve trigonometric			
	equations in a given			
	interval			
	l can solve trigonometric			
	equations involving			
	compound angles			
		1		
25	Addition formulae (EE)	Å	F D	
2.5	know and can apply the			V
	addition formulae			
	i can use the addition			
	tormulae to prove			
	trigonometric identities			
	I know and can apply the			
	double angle formulae			
	l can apply trigonometric			
	formulae to find the			
	solution of a geometric			
	problem			

	I can apply the double			
	angle formulae to simplify			
	trigonometric equations			
	· ·			
2.6	The wave function (EF)	\$	Ð	?
	l can solve simultaneous			
	equations of the form			
	$k\cos a = p, k\sin a = q$			
	l can express			
	$a\cos x + b\sin x$ as a single			
	function in the form			
	$k\cos(x\pm\theta)$ or $k\sin(x\pm\theta)$			
	I can find the maximum.			
	minimum and zeros of			
	$a\cos x + b\sin x$ and the			
	corresponding values of x			
	I can sketch the araph of			
	$a\cos x + b\sin x$			
	I can solve equations of the			
	form $a \cos x + b \sin x = c$			
2.7	Exponential and	*	E	.
2.7	Exponential and Logarithmic Functions (EF)	6	(Pa	.
2.7	Exponential and Logarithmic Functions (EF) I know that	6	-60	.
2.7	Exponential and Logarithmic Functions (EF) I know that $a^{y} = x \iff \log_{a} x = y(a > 1, x > 0)$	6	-6	.
2.7	Exponential and Logarithmic Functions (EF) I know that $a^{y} = x \iff \log_{a} x = y(a > 1, x > 0)$	\$	Ð	\$
2.7	Exponential and Logarithmic Functions (EF) I know that $a^{y} = x \iff \log_{a} x = y(a > 1, x > 0)$ I know that a function of	\$	P	4
2.7	Exponential and Logarithmic Functions (EF) I know that $a^{y} = x \iff \log_{a} x = y(a > 1, x > 0)$ I know that a function of the form $y = a^{x}$ is an	8	Ð	3
2.7	Exponential and Logarithmic Functions (EF) I know that $a^{y} = x \iff \log_{a} x = y(a > 1, x > 0)$ I know that a function of the form $y = a^{x}$ is an exponential function to the	\$	Ð	8
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$	8	P	9
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the	8	P	9
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms	8	P	9
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical	8	•	9
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws	\$		~
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg	\$	P	8
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$	\$	•	9
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to			~
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to the base e are called			~
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to the base e are called natural logs			•
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to the base e are called natural logs I know $\log_e x = \ln x$			~
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to the base e are called natural logs I know $\log_e x = \ln x$ I can solve simple			~
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to the base e are called natural logs I know $\log_e x = \ln x$ I can solve simple logarithmic and			
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to the base e are called natural logs I know $\log_e x = \ln x$ I can solve simple logarithmic and exponential equations			
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to the base e are called natural logs I know $\log_e x = \ln x$ I can solve simple logarithmic and exponential equations I can sketch associated			~
2.7	Exponential and Logarithmic Functions (EF) I know that $a^y = x \iff \log_a x = y(a > 1, x > 0)$ I know that a function of the form $y = a^x$ is an exponential function to the base $a, a \neq 0$ I know and can use the laws of logarithms I can simplify numerical expressions using the laws of logarithms eg $5\log_8 2 + \log_8 4 - \log_8 16$ I know that logarithms to the base e are called natural logs I know $\log_e x = \ln x$ I can solve simple logarithmic and exponential equations I can sketch associated exponential and			

	I can solve problems			
	involving exponential			
	arouth and decay			
	I can use straight line			
	graphs to confirm a			
	relationship of the form			
	$y = ax^{b}$ and $y = ab^{x}$			
2.8	Vectors (EF)	\$	1	?
	I know that a vector is a			
*	quantity with both			
	magnitude (size) and			
	direction			
*	I can calculate the length			
*	of a vector			
	l can calculate a	1	1	-
*	component given two from			
	A and B and vector AB			
	I know that a unit vector			
	has a maanitude of 1 unit			
	I know that for parallel			L
	vectors $v = ku$			
	I know and can apply the			
*	vectors <i>i</i> . <i>i</i> and <i>k</i>			
	I can add, subtract and			
*	find scalar multiples of			
	vectors			
	I can simplify vector			
*	nothways			
	L can interpret 2D sketches			
*	of 3D situations			
	I can determine whether ?			
	points are collinear in 3D			
	I can find the ratio in which			
	one point divides 2 others			
	Given a ratio I can find or			
	interpret the 3 rd			
	noint/vector			
	I can calculate the scalar			
	product using a bH b b			
	n can calculate the scalar			
	product using $x_1x_2 + y_1y_2$			
	$\pm Z_1 Z_2$			
	I KNOW THAT IT A ANA b Are			
	perpenaicular men			
	a.b=0			
	I know that if $a.b=0$ then			
	a and b are perpendicular			
	I can calculate the angle			
	between two vectors			
	I know for vectors a, b and			
	c that $a.(b+c) = a.b+a.c$			
				L
L	1		1	

3.1	Further Calculus (RC)	\$	(Participation)	•
_	l can differentiate			
	$\sin x$ and $\cos x$			
	l can differentiate			
	$(ax+b)^n$ using the chain			
	rule			
	I can differentiate functions			
	like			
	$\sin 3x, \cos^3 x, \cos(2x + \frac{\pi}{3}), \sin^2$	x		
	using the chain rule			
	I can integrate $\sin x$ and			
	cosx			
	l can integrate			
	$(ax+b)^n$ using the chain			
	rule			
	l can integrate functions			
	like $\sin 3x, \cos(2x + \frac{\pi}{3})$ using			
	the chain rule			
3.2	Revision of other areas of		~	
	Relationships & Calculus			2

Outcomes marked * are part of the National 5 course.