

1.4	Recurrence Relations (APP)	\$	©	φ
	I can use the notation $u_{n+1}=a u_{n}+b$ to define a recurrence relation			
	I can evaluate previous and successive terms of a recurrence relation			
	I can state the conditions for a limit to exist $[-1<a<1]$			
	I can state whether a sequence will converge or diverge from its recurrence relation			
	I can evaluate the limit of a recurrence relation using $l=\frac{b}{1-a}$			
	I can solve recurrence relations to find a and b using simultaneous equations			
	I can solve recurrence relation problems written in context			
1.5	Differentiation (APP + RC)	\$	๑	φ
	I can use the notation $f^{\prime}(x)$ and $\frac{d y}{d x}$ for a derivative			
	I can differentiate sums and differences			
	I can differentiate negative and fractional powers			
	I can express in differentiable form and differentiate			
	I can find the gradient of a point on a curve $y=f(x)$ at $x=a$			
	I can find the point on a curve given the gradient			
	I can find the equation of the tangent to a curve			
	I know the meaning of rate of change			
	I can find the rate of change of a function and use it to solve problems			

	I can find where curves are increasing and decreasing			
	I can find stationary points			
	I can determine the nature of stationary points			
	I can sketch a curve given its equation			
	I can solve problems finding greatest and least values using optimisation			
	I can find the maximum and minimum values in a closed interval			
	I can sketch the graph of a derived function			
1.6	Integration (APP + RC)	d	-	P
	I can find the integral of $f(x)=p x^{n}$			
	I can find the integral of sums and differences			
	I can integrate negative and fractional powers			
	I can express in integrable form and integrate			
	I can evaluate definite integrals			
	I can find the area between a curve and the x-axis			
	I know that there are no negative areas			
	I can find the area between two curves			
	I can solve differential equations			
2.1	Polynomials (RC)	\$	©	φ
	I can find the remainder on dividing a polynomial by ($x-h$)			
	I can find the remainder on dividing a polynomial by ($a x+b$)			
	I can state my answer in the form $f(x)=(a x-b) Q(x)+R$			
	I can use the factor theorem to determine the			

	$y=k f(x)$			
	$y=f(k x)$			
	Sketch and annotate related exponential and logarithmic functions			
	I can determine the equation of exponential and logarithmic functions from their graphs			
2.4	Trigonometry: Graphs and Functions (EF)	©	©	p
*	I can identify the period and amplitude of a trigonometric function or graph			
*	I know the general features of Sine and Cosine graphs			
*	I can state the equation of a trigonometric function from its graph			
	I can convert from degrees to radians and vice versa			
*	I can determine exact values			
*	I can determine exact values in all 4 quadrants			
	I can solve problems using exact values			
	I can solve equations of the type $f(x)=g(x)$ graphically			
	I can solve trigonometric equations in a given interval			
	I can solve trigonometric equations involving compound angles			
2.5	Addition formulae (EF)	\$	จ	P
	I know and can apply the addition formulae			
	I can use the addition formulae to prove trigonometric identities			
	I know and can apply the double angle formulae			
	I can apply trigonometric formulae to find the solution of a geometric problem			

	I can solve problems involving exponential growth and decay			
	I can use straight line graphs to confirm a relationship of the form $y=a x^{b}$ and $y=a b^{x}$			
2.8	Vectors (EF)	\$	จ	P
*	I know that a vector is a quantity with both magnitude (size) and direction			
*	I can calculate the length of a vector			
*	I can calculate a component given two from A and B and vector $A B$			
	I know that a unit vector has a magnitude of 1 unit			
	I know that for parallel vectors $v=k u$			
*	I know and can apply the vectors i, i and k			
*	I can add, subtract and find scalar multiples of vectors			
*	I can simplify vector pathways			
*	I can interpret 2D sketches of 3D situations			
	I can determine whether 3 points are collinear in 3D			
	I can find the ratio in which one point divides 2 others			
	Given a ratio I can find or interpret the $3^{\text {rd }}$ point/vector			
	I can calculate the scalar product using a. $b \neq d \quad b$ $\cos \theta$			
	I can calculate the scalar product using $x_{1} x_{2}+y_{1} y_{2}$ $+z_{1} z_{2}$			
	I know that if a and b are perpendicular then $a \cdot b=0$			
	I know that if $a . b=0$ then a and b are perpendicular			
	I can calculate the angle between two vectors			
	I know for vectors a, b and c that $a .(b+c)=a . b+a . c$			

3.1	Further Calculus (RC)			
	I can differentiate $\sin x$ and $\cos x$	I can differentiate $(a x+b)^{n}$ using the chain rule	I can differentiate functions like $\sin 3 x, \cos ^{3} x, \cos \left(2 x+\frac{\pi}{3}\right), \sin ^{2}$ using the chain rule	x

Outcomes marked * are part of the National 5 course.

