A sequence is defined by $u_{n+1} = 3u_n + 4$ with $u_1 = 2$.

What is the value of u_3 ?

- A 34
- B 21
- C 18
- D 13

A sequence is generated by the recurrence relation $u_{n+1} = 0.7u_n + 10$. What is the limit of this sequence as $n \to \infty$?

- $A = \frac{100}{3}$
- B $\frac{100}{7}$
- $C = \frac{17}{100}$
- D $\frac{3}{10}$

A sequence is defined by the recurrence relation

$$u_{n+1} = 0.3u_n + 6$$
 with $u_{10} = 10$.

What is the value of u_{12} ?

- A 6.6
- B 7.8
- C 8·7
- D 9.6

A sequence is generated by the recurrence relation $u_{n+1} = 0.4u_n - 240$.

What is the limit of this sequence as $n \to \infty$?

- A 800
- B 400
- C 200
- D 400

A sequence is defined by the recurrence relation

$$u_{n+1} = \frac{1}{4}u_n + 16, \ u_0 = 0.$$

(a) Calculate the values of u_1 , u_2 and u_3 .

Four terms of this sequence, u_1 , u_2 , u_3 and u_4 are plotted as shown in the graph.

As $n \to \infty$, the points on the graph approach the line $u_n = k$, where k is the limit of this sequence.

- (b) (i) Give a reason why this sequence has a limit.
 - (ii) Find the exact value of k.

3

3