

Numeracy

Applications of Mathematics

Mary Russell School

Name:
Class:
Teacher:

Contents

Quick Recap	3
Rounding Numbers	5
Multiplying and Dividing by 10, 100, 1000	11
Four Operations	17
Percentages	20
Hire Purchase	24
Perimeter	28
Time	35
Distance, Speed, Time	42
Negative Numbers	52
Triangles	57
Foreign Exchange	64
Scales	67
Ratio	74
Information Handling	81
Probability	93

Quick Recap
Times Tables

1 X	$2 X$	$3 x$	$4 X$	$5 x$
$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$
$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$
$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$
$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$
$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$
$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	$4 \times 6=24$	$5 \times 6=30$
$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$
$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$
$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$
$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$
$1 \times 11=11$	$2 \times 11=22$	$3 \times 11=33$	$4 \times 11=44$	$5 \times 11=55$
$1 \times 12=12$	$2 \times 12=24$	$3 \times 12=36$	$4 \times 12=48$	$5 \times 12=60$
$6 \times$	$7 X$	$8 \times$	$9 X$	$10 \times$
$6 \times 1=6$	$7 \times 1=7$	$8 \times 1=8$	$9 \times 1=9$	$10 \times 1=10$
$6 \times 2=12$	$7 \times 2=14$	$8 \times 2=16$	$9 \times 2=18$	$10 \times 2=20$
$6 \times 3=18$	$7 \times 3=21$	$8 \times 3=24$	$9 \times 3=27$	$10 \times 3=30$
$6 \times 4=24$	$7 \times 4=28$	$8 \times 4=32$	$9 \times 4=36$	$10 \times 4=40$
$6 \times 5=30$	$7 \times 5=35$	$8 \times 5=40$	$9 \times 5=45$	$10 \times 5=50$
$6 \times 6=36$	$7 \times 6=42$	$8 \times 6=48$	$9 \times 6=54$	$10 \times 6=60$
$6 \times 7=42$	$7 \times 7=49$	$8 \times 7=56$	$9 \times 7=63$	$10 \times 7=70$
$6 \times 8=48$	$7 \times 8=56$	$8 \times 8=64$	$9 \times 8=72$	$10 \times 8=80$
$6 \times 9=54$	$7 \times 9=63$	$8 \times 9=72$	$9 \times 9=81$	$10 \times 9=90$
$6 \times 10=60$	$7 \times 10=70$	$8 \times 10=80$	$9 \times 10=90$	$10 \times 10=100$
$6 \times 11=66$	$7 \times 11=77$	$8 \times 11=88$	$9 \times 11=99$	$10 \times 11=110$
$6 \times 12=72$	$7 \times 12=84$	$8 \times 12=96$	$9 \times 12=108$	$10 \times 12=120$

Measurement

The units we use for measuring distances are millimetres (mm), centimetres (cm), metres (m) and kilometres (km).
$1 \mathrm{~cm}=10 \mathrm{~mm}$
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~km}=1000 \mathrm{~m}$

To convert between units:
mm

cm

m

km
km

m

cm

mm

The units we use for measuring weight are grams (g) and kilograms (kg).
$1 \mathrm{~kg}=1000 \mathrm{~g}$

To convert between them:

g

kg
kg

g

The units we use for measuring liquids are millilitres (ml) and litres (I)
$11=1000 \mathrm{ml}$

To convert between them:
ml
I
$1 \quad \mathrm{~m} 1000 \mathrm{ml}$

Rounding Numbers

Learning Intention

To round numbers to nearest $10,100,100$ and to 1 and 2 decimal places

Success Criteria

\checkmark Check which column you are rounding to
\checkmark Look at the column to the right
\checkmark Remember the rule - if it's 4 or below we round down, 5 or above we round up

We can round to the nearest 10,100 and 1000.
For the nearest 10 , we look at the number in the unit column and follow the rule.
For example:

The rule is: if it's 4 or below we round down, 5 or above we round up.

Now round the following to the nearest 10 :

Question	Answer
74	
12	
3	
96	
554	
148	
635	
149	

For the nearest 100, we look at the number in the tens column and the same rule applies:
For example:

The rule is: 'if it's 4 or below we round down, 5 or above we round up.

Now round the following to the nearest 100 :

Question	Answer
241	
358	
499	
754	
50	
49	
999	
25	
167	
758	
198	

For the nearest 1000, we look at the number in the hundreds column and as before the rule applies. For example:

Now round the following to the nearest 1000:

Question	Answer
7468	
2489	
999	
499	
1547	
7619	
1248	
1245	

We can round numbers to the nearest whole number by looking at the next number (the number after the decimal point).

For example

Now round the following numbers to the nearest whole number, write your answers in the boxes below:

Question	Answer
7.6	
5.2	
4.8	
11.3	
6.5	
3.42	
6.25	
13.75	
18.24	

We can also round to decimal places using the same rule.
To round to one decimal place, we need to look at the second number after the decimal point (the hundredths column).

For example:

Now round the following to one decimal place:

Question	Answer
4.52	
1.26	
7.65	
4.795	
46.25	
74.19	
18.462	
4.875	
40.224	

To round to two decimal places, we need to look at the third number after the decimal point (the thousandths column).

For example:

7.65

The rule is: if it's 4 or below we round down, 5 or above we round up.

Now round the following to two decimal places:

Question	Answer
4.515	
3.154	
7.649	
1.724	
12.846	
7.134	
7.496	
12.999	

Multiplying and Dividing by 10, 100 and 1000

Learning Intention

To multiply and divide numbers by 10,100 and 1000

Success Criteria

\checkmark For multiplying, move numbers to the left
\checkmark For dividing, move numbers to the right

When we multiply a number by 10 , we move all the numbers one place to the left.
For example:
$56 \times 10=560 \quad 24 \times 10=240$
We do the same for multiplying decimals by 10 .
For example:
$7.4 \times 10=74$
$1.8 \times 10=18$

Now try the following without a calculator:

Question	Answer
75×10	
24×10	
715×10	
92×10	
1.4×10	
48.5×10	
7.5×10	
2.94×10	

To multiply a number by 100, the numbers move 2 places to the left.
For example:
$451 \times 100=45100$
$1.245 \times 100=124.5$
Now try the questions below without a calculator:

Question	Answer
24×100	
78.1×100	
7.64×100	
6.153×100	
23.45×100	
100.5×100	
45.82×100	
15.546×100	
16.45×100	
87.29×100	
78.625×100	
76.457×100	
12.795×100	
58.61×100	

To multiply a number by 1000 , the numbers move 3 places to the left.
For example:
$145 \times 1000=145000$
$3.49 \times 1000=3490$
Now try the questions below without a calculator:

Question	Answer
745×1000	
70210×1000	
2.156×1000	
5.154×1000	
2.14×1000	
7450×1000	
79.46×1000	
7.16×1000	
2.4×1000	
1578×1000	

To divide a number by 10, the numbers move 1 place to the right.
For example:
$5640 \div 10=564$
$12.4 \div 10=1.24$
Now try the questions below without a calculator:

Question	Answer
$24 \div 10$	
$364 \div 10$	
$785 \div 10$	
$4051 \div 10$	
$1056 \div 10$	
$52.01 \div 10$	
$84.2 \div 10$	
$145.2 \div 10$	
$17.2 \div 10$	

To divide a number by 100, the numbers move 2 places to the right.
For example:
$4751 \div 100=47.51$
$10.4 \div 100=0.104$
Now try the questions below without a calculator:

Question	Answer
$204 \div 100$	
$452 \div 100$	
$2168 \div 100$	
$7953 \div 100$	
$455.28 \div 100$	
$32.18 \div 100$	
$64.59 \div 100$	
$1.2 \div 100$	
$13.5 \div 100$	
$102 \div 100$	

To divide a number by 1000, the numbers move 3 places to the right.
For example:
$45965 \div 1000=45.965$
$98 \div 1000=0.098$
Now try the questions below without a calculator:

Question	Answer
$84560 \div 1000$	
$45877 \div 1000$	
$6784 \div 1000$	
$756 \div 1000$	
$124.5 \div 1000$	
$876.2 \div 1000$	
$675.8 \div 1000$	
$4.85 \div 1000$	
$32.54 \div 1000$	

How did you get on:
\checkmark When multiplying, did you move numbers to the left?
\checkmark When dividing, did you move numbers to the right?

Four Operations

Learning Intention

To use,,$+- x$ and \div to solve problems

Success Criteria

\checkmark Select the appropriate operation to carry out calculations
\checkmark Use the selected operation appropriately
\checkmark Remember the units

The four operations are addition, subtraction, multiplication and division. Here are some other words for them:

Here you may have to add, subtract, multiply or divide.
You need to decide which to operation to use and complete the calculation.
For example,
Two tables are placed together to form a larger one. If the first table is 67.4 cm long and the second table is 56.8 cm long. what is the total length?

Here we are adding so $67.4+56.8=\underline{124.2 \mathrm{~cm}}$

Now try the questions below, write your working and answer in the box opposite:
You can use a calculator.

Question	Working and Answer
A piece of wood is $37 \cdot 4 \mathrm{~cm}$ long. If $12 \cdot 7 \mathrm{~cm}$ is cut off from one end what length remains?	
A child places 5 toy bricks of length $14 \cdot 6 \mathrm{~cm}$ in a straight line. What is the total length?	
A piece of ribbon $114 \cdot 8$ cm long is shared equally among 7 girls. What length should each girl receive?	
Three boxes weigh $4 \cdot 6$ kg, $7 \cdot 9$ kg and $18 \cdot 2$ kg. What is the total weight?	
A bottle of Coca-Cola holds 2 litres. What volume remains after a glass of $0 \cdot 35$ litres has been removed?	

| What length of shelf is needed to hold books
 with thicknesses of $6 \cdot 3 \mathrm{~cm}, 7 \cdot 4 \mathrm{~cm}, 1 \cdot 8 \mathrm{~cm}, 2 \cdot 8$
 cm and $4 \cdot 9 \mathrm{~cm}$? |
| :--- | :--- |

How did you get on?
\checkmark Can you select the appropriate operation to carry out calculations?
\checkmark Can you use the selected operation appropriately?
\checkmark Did you remember the units?

Now you're ready to try assessment question 2

Percentages

Learning Intention

To calculate percentages of an amount and use this to solve problems

Success Criteria

\checkmark Understand how to calculate a percentage
\checkmark Calculate the percentage
\checkmark Use this to solve problems

\checkmark Remember the units

PERCENT literally means PER HUNDRED, so we're going to be dividing by 100 here. You can use a calculator.

For example,
Find 25% of $£ 120$

Now try the following questions, write your working and answers in the box opposite. You can use a calculator.

Question	Working and Answer
30% of $£ 60$	
5% of 98 kg	

16% of 54 ml	
64% of $£ 85$	
50% of 166 m	
16% of $£ 250$	
3% of $£ 63$	
15% of 300 miles	
7% of 400 m	
34% of 340 litres	

Percentage Rise/Fall

Sometimes we need to calculate percentages to solve problems.
For example,
A mobile phone costs $£ 150$, it is on sale with a 20% discount.
(a) How much is the discount?
(b) How much does the phone cost now?
(a) $20 \div 100 \times 150=30$
(b) $150-30=£ 120$

So here we are calculating the percentage as normal then either adding or subtracting from the original amount.

We need to think about whether we add or subtract.
If its an increase, then we add.
If it's a decrease, then we subtract.

Try the questions below, write your working and answer in the box opposite.

Question	Working and Answer
A bat colony has 40 bats. Over the breeding season, the population increases by 30\%. (a) How many new bats were born? (b) How many bats are there in the colony now?	
A petri dish contains 240 bacteria. These increase overnight by 23\% (a) How many extra bacteria are there? (b) How many bacteria are there altogether the next morning?	
A company gives all its workers a 5\% pay rise. Joan earns $£ 240$ per week. (a) How much extra does Joan earn? (b) What does Joan earn with her new payrise?	

| A clothes shop reduces its prices by 15%. A coat
 originally cost $£ 45$.
 (a) How much has the coat been reduced
 by? |
| :--- | :--- |
| (b) What is the new price of the coat? |

How did you get on?
\checkmark Do you understand how to calculate a percentage?
\checkmark Can you calculate percentages?
\checkmark Can you use this to solve problems?
\checkmark Did you remember the units?

Now you're ready to try assessment question 1

Hire Purchase

Learning Intention

To calculate and compare hire purchase deals

Success Criteria

\checkmark Calculate each deal
\checkmark Decide which is better value

\checkmark Remember the units

Hire purchase is when you buy something expensive like a TV or bike and you pay a deposit then pay more money every month for 6 or so months.

For example,
Jasmine bought a TV on the following hire purchase agreement:
£100 deposít
6 payments of $£ 45.50$.
What is the total cost?

First, we can calculate the total of the monthly payments:
$6 \times 45.50=£ 273$
Then, add on the deposit:
$£ 273+£ 100=£ 373$
Total cost is $£ 373$.
Calculate the total cost for the following hire purchase agreements:

Question	Working and Answer
Deposit $£ 50$ 6 payments of $£ 25$	
Deposit $£ 150$ 12 payments of $£ 87.50$	

Deposit $£ 100$ 12 payments of $£ 62.50$	

Now that we can calculate hire purchase deals, we can compare them to decide which one is better value. Remember we need to calculate the total amount and the cheapest deal is the on with the lowest total cost.

For example,
Jane wants to buy a new bike; she has found the bike she would like in 2 shops and they are offering different deals:

```
Shop A
Deposít E100
6 payments of E3O
```


Shop B

Deposít $£ 150$
5 payments of E29

Which shop has the cheaper deal?

We need to calculate the total cost for both deals:

Shop A

$6 \times 30=£ 180$
$180+100=£ 280$

Shop B

$5 \times 29=£ 145$
$145+150=£ 295$

Shop A has the cheaper deal.
Now try the questions below:

Question		Answer
Two shops are selling the same TV but are offering different deals:		
Shop A Deposit $£ 195$ 6 payments of $£ 45$	Shop B Deposit $£ 150$ 5 payments of $£ 70$	
Which is the better deal? Justify your answer by calculation.		
Two shops are selling the same fridge freezer but are offering different deals:		
Shop A Deposit $£ 175$ 6 payments of $£ 30$	Shop B Deposit $£ 195$ 5 payments of $£ 25$	
Which is the better Justify your answer	alculation.	

How did you get on?
\checkmark Did you calculate each deal?
\checkmark Did you decide which is better value?
\checkmark Did you remember the units?

Now you're ready to try assessment question 10

Perimeter

Learning Intention

To calculate perimeter of shapes and compound shapes

Success Criteria

\checkmark Understand how to calculate perimeter
\checkmark Ensure you include all sides of the shape
\checkmark Remember the units

Perimeter is the distance all the way around a shape.
For example,
What is the perimeter of the following shapes:

Since this is a rectangle, it has 2 pairs of equal sides so 2 long sides of 15 m and 2 short sides of 5 m , so we can write them on the diagram.

$$
\begin{aligned}
P & =15+15+5+5 \\
& =40 \mathrm{~m}
\end{aligned}
$$

Calculate the perimeter of the following shapes:

10m	
$\square 26 m$	

There are shapes called compound shapes, these are essentially simple shapes 'stuck together'. When asked to calculate the perimeter of these shapes we do it in exactly the same way as before. Make sure you all up all the sides of the shape!

For example:

Now try the following questions:

Sometimes, we're not given as much information and have to use our knowledge of shapes to help. For example:

The school needs new guttering to go all around the building. Calculate how many metres of guttering are required.

Here some sides are missing and we need to figure out what they are before we can calculate the perimeter.

$$
\begin{aligned}
P & =15+7+24+8+20+19+13+19+6+15 \\
& =\underline{146 \mathrm{~m}}
\end{aligned}
$$

Now try the following, you can write your working and answer inside the shape.

1) Graeme is planning a campsite for a music festival. He needs to put fencing around the perimeter of the whole site. Work out how many metres of fencing he will need.

2) Emma wants to run around this circuit in her local park. How far is it all the way around? Hint: the park has a vertical and horizontal line of symmetry.

3) Mrs Jones wants to decorate her classroom with fairy lights all the way around the room.
a. How long do her fairy lights need to be?
b. She has 6 m of fairy lights, is this enough?

Hint: Watch out for m and cm

How did you get on?
\checkmark Do you understand how to calculate perimeter?
\checkmark Did you ensure you included all sides of the shape?
\checkmark Did you remember the units?

Now you're ready to try assessment question 5

Time

Learning Intention

To convert between 12- and 24-hour times and solve problems involving time

Success Criteria

\checkmark Understand how to convert between 12- and 24-hour time
\checkmark Remember am/pm for morning and afternoon times
\checkmark Remember 4 digits for 24-hour time

\checkmark Use your knowledge of time to calculate time intervals and add on time

12- and 24-hour time

There are two ways of writing time, 12 -hour time and 24 -hour time, for example, 8.30pm is the same as 2030 hours - both of these mean half past 8 in the evening.

Converting between 12-hour time and 24-hour time:

AM

For am times (in the morning), 12- and 24-hour times look very similar:
9.15am = 0915 hours 10.40am = 1040 hours

We just need to remember that 24-hour time ALWAYS has 4 digits.

PM

For pm times (in the afternoon), we need to add on 12 to the hours:

> So, for example
1.30 pm
$1+12=13$
so it becomes 1330 hours so it becomes 1915 hours

24-hour time

```
    0}1
    a.m.
                                    p.m.
    121[2
12-hour time
```

Now convert the following 12-hour times to 24-hour time:

12-hour time	24-hour time
10.30 am	
7.15 pm	
9.20 am	
12 am (midnight)	
1.50 am	
11.45 am	
7.20 pm	
7.35 pm	

3.30 pm	
7.30 pm	
9.20 am	
3.50 am	
6.45 pm	
8.55 pm	
10.45 am	
12.25 pm	
12 pm (midday)	

ets convert 24-hour time to 12-hour time:
Remember to write am or pm!

12-hour time	24 -hour time
	1240 hours
	0000 hours
	2145 hours
	0755 hours

	1235 hours
	1440 hours
	0645 hours
	2230 hours
	0530 hours
	1715 hours
	2350 hours
	1355 hours
	0925 hours
	1130 hours
	1845 hours
	0030 hours

Time Intervals

It's also very useful to be able to work out how much time has passed, or to 'add' on time. For example,
sally went for a walk at 2.10 pm and got home at 4.25 pm .
How long was she walking for?
You may already be able to do this mentally but if not, the method below will always work.

	Hours	Minutes
2.10pm -3.00 pm	0	50
$3.00 \mathrm{pm}-4.00 \mathrm{pm}$	1	0
4.00pm -4.25 pm	$\underline{0}$	25
TOTAL	1 hour	75 minutes
	$\underline{2}$ hours 15 minutes in 1 hour so	

Try the questions below and write your working and answer in the box opposite:

Question	Answer
Jenny started watching TV at 7.30pm and stopped at 9.15pm. How long was she watching TV for?	
Mike was playing his game from 11.30am to 1.10pm, how long was he playing his game?	
Ken played football with his friends from 10.20am to 12.00pm. How long was he playing football?	

Lauren took part in a sponsored cycle which started at 1120 hours. She finished at 1450 hours. How long was she cycling for?	
Rhonda read her book from 5.40pm until 7.20pm. How long was she reading her book?	
Rosie likes to work in her garden. She started at 9.50am and finished at 5.40pm. How long was she gardening for?	

We can also be asked to 'add' on time.
For example,
A train left Aberdeen at 9.50 am and arrived in Edinburgh 2 hours and 35 minutes later. What time did it arrive?

As above, you may be able to do this mentally but if not then you can use this method:
$9.50 \mathrm{am}+2$ hours 35 mins
2 hours after 9.50am is 11.50am
11.50am + 35 mins

12.25 pm

The train arrived in Edinburgh at 12.25 pm .

Try the following questions and write your working and answer in the box opposite:

Question	Answer
Chloe got on the bus at 10.45am, her journey took 55 minutes. When did she arrive?	
Chris met his friends at 1435 hours. He stayed for 2 hours 15minutes. When did he leave?	
Pippa walked her dog for 35 minutes. She left at 5.45pm, when did she get home?	
James was baking a cake; it needs to go in the oven for 45 minutes. He puts it in at 3.20pm, when will it be ready to come out?	

How did you get on?
\checkmark Do you understand how to convert between 12-and 24-hour time?
\checkmark Did you remember am/pm for morning and afternoon times?
\checkmark Did you remember 4 digits for 24 -hour time?
\checkmark Did you use your knowledge of time to calculate time intervals and add on time?

Now try assessment question 4

Distance, Speed, Time

Learning Intention

To calculate distance, speed and time using a formula

Success Criteria

\checkmark Understand how to work with time
\checkmark Use the formula correctly to calculate distance, speed and time
\checkmark Remember the units

Calculating Distance

The formula we need is Distance $=$ Speed \times Time .
We can write this as a triangle, which will then help later to calculate speed and time:

For example,
How far can you travel walking at $5 \mathrm{~km} / \mathrm{h}$ for 2 hours?
First, write down the information that the question gives... then substitute into the formula: $D=S \times T$

It's important that the units are consistent. This means that when the speed is kilometres per hour, the distance will be kilometres and the time is in hours. Here, we are not dealing with metres, miles or minutes.

Try the following questions, write your working and answers in the box opposite. You can use a calculator.

Question	Answer
How far does a car travel at 46mph for 2 hours?	

We can also work with times that aren't in whole hours.
For example,
How far does an athlete run at $8 \mathrm{~km} / \mathrm{h}$ for 30 minutes?
$\mathrm{S}=8 \mathrm{~km} / \mathrm{h}$
$\mathrm{T}=30 \mathrm{mins}=0.5$ hours

$\mathrm{D}=?$$\quad$| D | $=\mathrm{S} \times \mathrm{T}$ |
| ---: | :--- |
| | $=8 \times 0.5$ |
| $=4 \mathrm{~km}$ | |

Similarly,

Minutes	Hours
15	0.25
30	0.5
45	0.75

Try the following questions:

Question	Answer
How far does a car travel at 40mph for 30 minutes?	
How far does a train travel at 80mph for 45 minutes?	
How far does a canoe travel at 4mph for 15 minutes?	

How far does a ferry travel at 13mph for 3 hours?	
How far does a lorry travel at 60 mph for 1 hour and 30 minutes? Hint: This is an hour and a half so $T=1.5$ hours	
How far does a cheetah run at 30 mph for 15	
minutes?	

Calculating Speed

We can calculate speed by rearranging our formula: Speed = Distance \div Time.
Using the triangle, cover up S and its D/T. S = D $\div T$

For example,
calculate the average speed of a runner running 12 miles in 3 hours.
$\mathrm{D}=12$ miles
$\mathrm{T}=3$ hours
$S=$?

$$
\begin{aligned}
S & =D \div T \\
& =12 \div 3 \\
& =4 \mathrm{mph}
\end{aligned}
$$

As before the units must be consistent. So here we have distance in miles, time in hours so speed is a combination of these: miles per hour.

Now try the following questions writing your working and answers in the boxes opposite. You can use a calculator.

Question	Answer
A train travels 280 miles in 4 hours. What is it's average speed?	

| A submarine sails 640 miles in 8 hours.
 Calculate it's average speed.

 A plane flies 1550 miles in 5 hours. What is it's
 average speed?

 A marathon runner covers 22 miles in 2 hours,
 calculate their average speed.

 A coach travels 483 miles in 7 hours, what is it's
 average speed?
 A lorry travels 8 miles in 15 minutes, what is it's
 average speed?
 Hint: Remember 15 minutes is 0.25 hours
 average speed?
 Hint: Remember 30 minutes is 0.5 hours
 |
| :--- | :--- |

Calculating Time

We can calculate speed by rearranging our formula: Time $=$ Distance \div Speed.
Using the triangle, cover up T and its $\mathrm{D} / \mathrm{S} . \mathrm{T}=\mathrm{D} \div \mathrm{S}$

For example,

How long will it take a plane to travel 1200 km when it flies at an average speed of $300 \mathrm{~km} / \mathrm{h}$?

| $\mathrm{D}=1200 \mathrm{~km}$ |
| :--- | :--- |
| $\mathrm{~S}=300 \mathrm{~km} / \mathrm{h}$ |
| $\mathrm{T}=?$ |\quad| $\mathrm{T}=\mathrm{D} \div \mathrm{S}$ |
| :--- |$\quad=1200 \div 300$

How long wíll it take for a walker to walk 10 miles at a speed of 4 milles per hour?

$$
\begin{aligned}
T & =\mathrm{D} \div \mathrm{S} \\
& =10 \div 4 \\
& =2.5 \text { hours } \\
& =2 \text { hours } 30 \text { minutes }
\end{aligned}
$$

Remember 0.5 hours is 30 minutes

Now try the following questions and write your working and answer in the box. You can use a calculator.

Question	Answer
How long does it take to walk 15 km at a speed of $5 \mathrm{~km} / \mathrm{h}$?	

How long does it take to travel 60 miles at a	
speed of 40mph?	
How long does it take to drive 195 km at 30km/h? Calculate the time taken to walk 15 miles at a speed of 3mph? How long does it take for a steam engine to travel 140 miles at 70mph? 	
Calculate the time taken to drive 90 miles at a	
speed of 60mph?	

Mixture - Distance/Speed/Time

Now let's try a mixture of questions. You need to decide whether you are working out distance, sped or time and use the correct formula.

For example,

A bulldozer, going at a steady speed of $16 \mathrm{~km} / \mathrm{h}$, took 2.5 hours to travel from it's depot to the construction site. What was the length of it's journey?
$\mathrm{S}=16 \mathrm{~km} / \mathrm{h}$
$\mathrm{T}=2.5 \mathrm{~h}$

$\mathrm{D}=?$$\quad$| D | $=\mathrm{S} \times \mathrm{T}$ |
| ---: | :--- |
| | $=16 \times 2.5$ |
| | $=\underline{40 \mathrm{~km}}$ |

$D=?$
$=40 \mathrm{~km}$

Now try the following questions, write your working and answer in the box opposite.

Question	Answer
A hot air balloon travelled 50km at an average speed of 20km/h. How long did it take to complete it's journey?	
A tractor is travelling at $6 \mathrm{~km} / \mathrm{h}$, how long will it take to cover a field distance of 9 km ?	

Henry can walk the 2 miles to work in 30 minutes. Calculate in mph , his walking speed.	
A bird takes 12.5 days to migrate from the UK to the USA. If it maintains an average speed of 200 miles per day, what distance will it fly to reach America?	
At full speed, a tortoise can travel at 0.5m per minute. How long would it take to cross a garden path measuring 1.5m?	
A bus travels at a speed of 24 mph for 15 minutes. How far does it travel in this time? Hint: 15 minutes = 0.25 hours	

How did you get on?
\checkmark Do you understand how to work with time?
\checkmark Did you use the formula correctly to calculate distance, speed and time?
\checkmark Did you remember the units?

Now you're ready to try assessment question 6

Negative Numbers

Learning Intention

To do calculations involving negative numbers

Success Criteria

\checkmark Understand how the number line extends to negative numbers

\checkmark Mark the numbers on the scale and count the jumps
\checkmark Remember the units

Negative numbers aren't sad! They're numbers less than zero. For example, -2, -42, -679.

This shows a number line with 0 in the middle, positive numbers which are bigger than zero and negative numbers which are less than zero. Positive numbers go on for every (they are infinite), negative numbers are the same.

Use the number lines below to help to count backwards beyond 0 . Start on the number given and draw the correct number of jumps backwards until you get to the answer.

For example,
From 5, count back 7

So we start at 5 and do 7 jumps back to get to our answer of -2 .

Try the following:
From 8, count back 12

[^0]Answer: \qquad

From 7, count back 15

Answer: \qquad

From 2, count back 9

Answer: \qquad

From 12, count back 22

Answer: \qquad

We hear of negative numbers in real life in relation to temperature.
For example, in winter the temperature outside could be $-2^{\circ} \mathrm{C}$.
Have a look at the thermometer below:

The temperature is $7^{\circ} \mathrm{C}$ and drops by $8^{\circ} \mathrm{C}$.
What is the new temperature?
We do this in the same way, start at 7 and count 8 jumps backwards.

We get to the answer of $-1^{\circ} \mathrm{C}$.

Now calculate the new temperature for each question. Use the thermometers to count down.
(a) The temperature has cooled from $3^{\circ} \mathrm{C}$ by $5^{\circ} \mathrm{C}$
(b) The temperature has cooled from $6^{\circ} \mathrm{C}$ by $10^{\circ} \mathrm{C}$
(c) The temperature has cooled from $9^{\circ} \mathrm{C}$ by $15^{\circ} \mathrm{C}$
(d) The temperature has cooled from $8^{\circ} \mathrm{C}$ by $11^{\circ} \mathrm{C}$
(e) The temperature has cooled from $1^{\circ} \mathrm{C}$ by $6^{\circ} \mathrm{C}$

We can also work out how many degrees temperature has dropped.

If you mark both temperatures on the thermometer, you can count how many jumps you would need to make to get from $5^{\circ} \mathrm{C}$ to $-6^{\circ} \mathrm{C}$.

$$
\text { Answer }=11^{\circ} \mathrm{C}
$$

How many degrees has the temperature dropped in every case? You can use the thermometers to help.
(a) A liquid is cooled from $6^{\circ} \mathrm{C}$ to $-7^{\circ} \mathrm{C}$
(b) A liquid is cooled from $4^{\circ} \mathrm{C}$ to $-2^{\circ} \mathrm{C}$
(c) A liquid is cooled from $10^{\circ} \mathrm{C}$ to $-9^{\circ} \mathrm{C}$
(d) A liquid is cooled from $6^{\circ} \mathrm{C}$ to $-7^{\circ} \mathrm{C}$

How did you get on?
\checkmark Do you understand how the number line extends to negative numbers?
\checkmark Did you mark the numbers on the scale and count the jumps?
\checkmark Did you remember the units?

Now you're ready to try assessment question 8

Triangles

Learning Intention

To measure sides and angles of triangles

Success Criteria

$\checkmark \quad$ Use a ruler to measure the side - start at 0 cm
\checkmark Use a protractor to measure the angle - start at 0°
\checkmark Remember the units

As you know, any 3 sided shape is called a triangle.
There are some special types of triangles:
Right angled

Isosceles

To measure the side of a triangle we use a ruler, here are some tips for using a ruler:

3. Count the number of intervals after the whole centimetre to find the length of the object to the nearest millimetre. Remember: $10 \mathrm{~mm}=1 \mathrm{~cm}$

4. Write down the length of the object in either centimetres or millimetres.

Now use your ruler to measure the sides of these triangles:

3.

To measure an angle, we need to use a protractor. A protractor looks like:

A protractor has 2 scales, one on the outside which goes from 0° to 180° clockwise and another on the inside which goes from 0° to 180° anticlockwise. You need to make sure that you are using the correct one.

Example 1

The blue lines show the angle that we are measuring.
Here we are using the outside scale, looking at the blue lines: one of them is at 0° and the other is at 53°. This means that the size of the angle is 53°.

Example 2

Here we are using the inside scale. One of the blue lines is at 0° it goes anti-clockwise and the other blue line is half way between 70° and 80° so the angle is 75°.

Now, look at the protractors below to measure the angles. Remember angles are measured in degrees so you need to use the ${ }^{0}$ symbol.
1.

Answer: \qquad
2.

Answer: \qquad
3.

Answer:

Now use your protractor to measure the sizes of all the angles in the triangles below. Write your answers next to each angle.

2.

3.

4.

How did you get on?
\checkmark Did you use a ruler to measure the sides - starting at 0 cm ?
\checkmark Did you use a protractor to measure the angles - starting at 0° ?
\checkmark Did you remember the units?

Now you're ready to try assessment question 11

Foreign Exchange

Learning Intention

To convert between GBP and other currencies

Success Criteria

\checkmark Use correct exchange rate
\checkmark Multiply to change $£$ to other currencies
$\checkmark \quad$ Divide to change other currencies to $£$
\checkmark Use the correct units

In Britain, we use the GBP (Great British Pound - $£$), however in other countries they use different currencies. Most European countries use the Euro, America uses the Dollar. We need to be able to convert between them.

We use exchange rates to determine how much of another currency is the same value as $£ 1$.
To change from $£$ to other currencies we MULTIPLY by the exchange rate.

Exchange Rates
$£ 1=€ 1.12$ (All Europe)
$£ 1=\$ 1.31$ (America)
$£ 1=\$ 1.82$ (Australia)

For example,
Barry went to Spain, he changed E250 into Euros before he left. How many Euros did he get?
$250 \times 1.12=€ 280$

Lucy went to America and changed E400 into Dollars. How many Dollars did she get?
$400 \times 1.31=\$ 524$
Try the following questions, remember to multiply by the correct exchange rate. Use the exchange rates in the box above.

Question	Working and Answer
Michael went to visit his family in Australia, he changed $£ 1200$ into Australian Dollars. How many Australian Dollars did he get?	

| Tom went to Portugal for a golfing holiday. He
 changed $£ 350$ to Euros, how many Euros did he
 receive? |
| :--- | :--- | | Mel went to New York and changed $£ 650$ to |
| :--- |
| American Dollars before she left. How many |
| American Dollars did she receive? |

We can also convert other currencies to GBP by DIVIDING by the exchange rate.
For example,
Kate returned from Paris with $€ 65$. How much is this is in $£$?
$65 \div 1.12=£ 58.04$

Now try the following questions using the same exchange rates.

Question	Answer
I brought \$142 back from America, how much	
us this in $£$?	

| Sara came home from a work trip to France. |
| :--- | :--- |
| She brought home $€ 56$. How much is this in $£$? |

How did you get on?
\checkmark Did you use correct exchange rate?
\checkmark Did you multiply to change $£$ to other currencies?
\checkmark Did you divide to change other currencies to $£$?
\checkmark Did you use the correct units?

Now you're ready to try assessment question 3

Scales

Learning Intention

To interpret scales accurately

Success Criteria

\checkmark Work out the increments that scale goes up in
\checkmark Interpret what the scale points to
\checkmark Solve problems involving scale
\checkmark Remember your units

Scales are very useful as they display measurements of weights, liquids and temperatures.
When we read scales, we must first work out what the scale is going up in (the increments). With this scale below, can you see that 0 is marked at the bottom and there's 5 little sections until you get to 10 ? This means that the scale goes up in 2 s so every little line is 2 . Try to complete the boxes below, the first one is 4 g .

Scales can be circular like the one below. As we did with the last question, we need to work out what the scale goes up in. Here there are 10 little sections between 0 and 10 so each little section is 1.

What is the scale pointing to?

Now use a ruler to draw arrows on the scale to show:
a) 22 g
b) 48 g
c) 65 g
d) 7 g
e) 99 g

Now try the following scales:
Remember to work out what the scales go up in.

Q1

Q2

A	
B	
C	
D	

Q3

A	
B	
C	
D	

A	
B	
C	
D	

Q5

A	
B	
C	
D	

Q6

\qquad ${ }^{\circ}$

\qquad -c

-c

${ }^{\circ} \mathrm{c}$

We can also be asked how much more needs to be added to make up to a certain amount.
For example,

some water has been added to this jug, how much more needs to be added to make it up to 400 ml ?

There is 260 ml in the jug.
$400-260=\underline{140 \mathrm{ml}}$ more needs to be added.

Now try the following:

1. How much more water needs to be added to make this up to 500 ml ?

Answer

2. How much more water needs to be added to make this up to 500 ml ?

Answer

3. How much more water needs to be added to make this up to 750 ml ?

Answer

4. How much more water need to be added to make this up to 21 ?

Hint: Remember there are 2000 ml in 21 .

Answer | |
| :--- |
| |
| |
| |
| |

5. How much more water need to be added to make this up to 21 ?

Hint: Remember there are 2000 ml in 21 .

Answer

How did you get on?
\checkmark Did you work out the increments that scale goes up in?
\checkmark Did you interpret what the scale points to?
\checkmark Did you solve problems involving scale?
\checkmark Did you remember your units?

Now you're ready to try assessment question 9

Ratio

Learning Intention

To use ratios to solve problems

Success Criteria

$\checkmark \quad$ Work out the ratio
\checkmark Simplify ratios
\checkmark Solve problems involving ratio
\checkmark Remember your units

We use ratios to compare different quantities.

For example,

The picture below shows 4 cats and 3 dogs. What is the ratio of cats and dogs?
So, we say the ratio of cats to dogs is $4: 3$, and the ratio of dogs : cats is $3: 4$.

Look at the pictures below and write the ratios both ways in the box opposite:

Pictures	Ratios
	Blue car: Red car
$3: 2$	

Sometimes, we get ratios that we need to simplify.
For example,
2 : 4 we can simplify this by dividing both sides by 2 to get $1: 2$
$\div 2 \xrightarrow[1: 2]{2: 4} \div 2$

It's very important to divide both sides by the SAME number!!
Now try to simplify the following ratios by dividing both sides by the SAME number:

Ratio	Simplified Ratio
4:6	$2: 3$
10:8	
3:6	
9:3	
5:15	
10:2	
100:10	
15:20	
18:9	
16:8	
24:6	
11:77	
8:16	
3:12	

Now try the following wordy questions, you are simplifying the ratio, just as before:

Question	Answer
A concert arena uses 5 security people for	
every 1000 spectators.	
(a) What is the ratio of spectators to	
security people?	
(b) Give this ratio in its simplest form.	
The same concert arena has 10 VIP parking	
spaces for every 120 ordinary spaces.	
(a) What is the ratio of VIP spaces to	
ordinary spaces?	
(b) Give this ratio in its simplest form.	
There are 20 desks and 24 chairs in a room.	
(a) What is the ratio of desks to chairs?	
(b) Give this ratio in its simplest form.	
In an office, the manager earns $£ 24,000$ and the	
salesman earns $£ 18,000$ each year.	
(a) What is the ratio of the manager's	
earnings to the salesman's earnings?	
There are 25 shop assistants and 150 shoppers.	
(a) What is the ratio of shop assistants to	
shoppers?	
(b) Give this ratio in its simplest form.	

We can do calculations with ratios; this is the opposite of simplifying ratios.
For example,
To make purple paint, the shop mixes red and blue paint in the ratio red: blue $=3: 4$. For a large order the shop use 15 tins of red paint. How many blue tins are required?

Now try the following:

Question	Working and Answer
A different shade of purple uses red and blue paint in the ratio $2: 3$. If 8 tins of red paint are used, how many blue tins are needed?	
In a cat and dog shelter the ratio of cats : dogs is $5: 4$. If there are 40 cats, how many dogs are there?	
Mr Robertson is a PE teacher and is ordering footballs and rugby balls in the ratio footballs : rugby balls 3 : 4. If he orders 16 rugby balls, how many footballs did he order?	

Another type of calculation is dividing an amount into a certain ratio.
For example,

E10 is split between two siblings in the ratio John: Jaime, 2:3. How much does each

 person get?Here John gets 2 parts and Jaime gets 3 parts. First step is to calculate how many parts there are so 2 $+3=5$.

Then we divide $£ 10 \div 5=£ 2$. So, each part is $£ 2$.
John gets $2 \times £ 2=£ 4$
Jaime gets $3 \times £ 2=£ 6$

Notice $£ 4+£ 6=£ 10$, which is
what we started with.

Another example,
140 eggs are split between two shops in the ratio Key store: Nisa, 3:4. How many eggs does each shop get?
$3+4=7$
$140 \div 7=20$ eggs
Key Store gets $3 \times 20=60$ eggs

Notice $60+80=140$ eggs, which is what we started with.

Nisa gets $4 \times 20=80$ eggs

Now try the questions below:

Question	Working and Answer
Sharon is painting her house. She has calculated she needs 40 litres of paint in total. She has decided to mix pink paint. She will need 3 litres of white for every 2 litres of red. How many litres of each colour will she need to buy?	
In the school choir, there are 30 children. The ratio of girls to boys is 4:1. How many boys are in the choir?	

| Tasneem brings some sweets to school on her
 birthday. In the bag, there are chocolates and
 toffees. The ratio of chocolates to toffees is 5:3.
 If there are 40 sweets, how many are
 chocolates? |
| :--- | :--- | | A bag of sweets contains red sweets and yellow |
| :--- |
| sweets. The ratio of red to yellow is 3:7. If there |
| are 40 sweets altogether, how many yellow |
| sweets are there? |
| |

How did you get on?
\checkmark Did you work out the ratio?
\checkmark Did you simplify ratios?
\checkmark Did you solve problems involving ratio?
\checkmark Did you remember your units?
Now you're ready to try assessment question 7

Information Handling

Learning Intention

To interpret graphs, charts and tables and be able to answer questions on them

Success Criteria

\checkmark Understand how to read graphs, charts and tables
\checkmark Read scales correctly
\checkmark Answer questions based on the graphs, charts and tables

Bar Charts

In the Manage Finance and Statistics unit, we organise data into frequency tables and draw graphs. In this unit, we interpret that information. Bar Charts are a good way of displaying information and look like:

This displays the information gathered from a survey on what pupils liked for breakfast in Breakfast club.

We can see that the most popular choice of breakfast is cereal with 8 pupils choosing this option.

The least popular choice was fruit with just 1 pupil choosing this option.
(a) How many pupils chose porridge?

(b) How many more pupils chose toast than fruit?

1. Below is a bar chart showing favourite after school activities:

Now answer the following questions based on the bar chart:

Question	Answer
What is the most popular activity?	
What is the least popular activity?	
How many pupils chose football?	
How many more chose swimming than	
homework?	
How many pupils were asked altogether?	

2. Below is a graph of fruit sold in a supermarket.

Now try some questions based on the bar chart:

Question	Answer	
How many of each fruit were chosen?	Fruit	Number
	Kiwi	
	Apple	
	Banana	
	Grapes	
	Orange	
How many more apples than oranges were sold?		
What was the most popular fruit?		
How many pieces of fruit were sold altogether?		

The following ar charts show two lots of information on the same graph so that we can compare them:
3. A survey was done on the colours of cars in two car parks. Here is a bar chart of the results:

Now try the questions below:

Question	Answer	Number
How many of each colour of car were in Car	Colour	
Park 1? Hint: This is the blue bars	Red	
	Blue	
	Silver	
How many silver cars were in Car Park 2?	Black	
	White	
Compare the colours of cars in the car parks.		

4. A survey was done on the number of pupils in each year group who walk to school, here are the results:

Now try the questions below:

Question	Answer
How many S2 girls walked to school?	
How many S4 boys walked to school?	
Compare the number of boys and girls who walk to school across the year groups.	

Pie Charts

Pie Charts are another way of displaying data. We can interpret this data.
For example,
The pie chart below shows the results from a survey on 55's favourite fruit. 36 people were asked, how many people chose melon?

Looking at the melon slice in the pie chart, we can see that it's 120°, you may remember that a full circle is 360° so we need to divide by 360 .

Then since there are 36 people in the survey, we need to multiply by 36 .
Melon $=120 \div 360 \times 36$
$=12$ people

1. A survey was carried out on where college students buy their lunch, the results are shown in the pie chart below.

Question	Working and Answer
150 students were asked. How many students ate in the canteen?	

2. Pupils were asked what their favourite ice cream is and the results are shown in the pie chart below:

Quesiton	Working and Answer
90 people were asked, how many people choose Strawberry as their favourite?	
90 people were asked, how many people choose Banana as their favourite?	

Tables

Sometimes information is displayed in a table and we need to be able to interpret this information.
For example:
Here are results from a long jump competition, all measurements in cm:

	1st Jump	2nd Jump	3rd Jump	4th Jump
Abby	145	164	154	187
Karla	187	197	168	201
Stacey	149	168	179	189
Flo	155	175	187	177

(a) How far did Karla jump on her $2^{\text {nd }}$ jump?

Looking at the table, go along Karla's row until you get to her $2^{\text {nd }}$ jump, 197 cm .
(b) Who won the competition?

We're looking for the longest jump so 201 cm - Karla won.
(c) Who improved with every jump?

Looking at the table, Stacey jumps further every time so she improved with every jump.

1. The table below shows who is able to babysit on which nights:

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Clare							
Rebecca							
Carol							

Looking at the table, answer the following questions:

Question	Answer
What nights can Clare babysit?	
Who can babysit on a Wednesday night?	
Who can babysit on the most nights?	
Which nights have the least choice for a babysitter?	
Which night has the most choice for a babysitter?	
Who could babysit on a Friday if Carol is unabla	

2. The table below shows eye colour information for pupils in S 6 :

Eye Colour	Number of boys	Number of girls
Blue	7	
Brown	5	8
Green	2	6

Now answer the following questions:

Question	Answer
How many boys have green eyes?	
How many girls have blue eyes?	
How many girls are in the class?	
How many pupils have brown eyes?	
How many pupils are in S6 altogether?	

3. Below is a table shows some college students. It shows their age, height and the distance they live from college.

		Height (cm)	Distance from college (miles)
Anya	24	164	2
Nathan	22	178	4
Sarah	26	170	3
Lucy	19	168	1

The college is launching a project and is looking for students to take part. They need someone who is 24 or younger, taller than 165 cm and lives 2 miles or less from college.

Question	Answer
Who can take part in this project?	
Why can't the others take part?	

How did you get on?
\checkmark Do you understand how to read graphs, charts and tables?
\checkmark Did you read scales correctly?
\checkmark Did you answer questions based on the graphs, charts and tables?

Now you're ready to try assessment questions 12, 13, 14 and 15.

Probability

Learning Intention

To calculate and compare probabilities of events happening

Success Criteria

\checkmark Understand what probability is
\checkmark Calculate probabilities
\checkmark Compare the probabilities and solve problems involving probability

The probability of something happening can be thought of as a fraction or decimal, and is calculated using the following formula:

Probability of event happening $=$ Number of favourable ways
Number of possible ways

Probabilities are numbers between 0 and 1 .
0 is 'definitely not gong to happen' and 1 is 'definitely going to happen'

For example,
In a bag of 10 sweets, 3 are chocolate and 7 are toffee. What is the probability that a sweet chosen at random will be a chocolate?

Try the following questions:

Question	Working and Answer
In a bag of 5 balls, there are 2 yellow balls and 3 red balls. What is the probability that a ball chosen at random will be yellow?	
In a box of 12 lollies, 3 are strawberry flavour. What is the probability that a lolly NOT strawberry flavoured will be chosen at random? Hint: If 3 are strawberry, 9 are not strawberry	
On a regular dice (which has numbers 1-6), what is the probability that it will show a 2?	
On a regular dice (which has numbers 1-6), what is the probability that it will show a number 3 or below?	

We can also compare probabilities to decide which is event is more likely.
For example,
A box has 3 yellow balls and 4 red balls
A jar has 5 yellow balls and 6 red balls

If choose a ball at random from either the box or jar, which gives the best chance of choosing a yellow ball?

First, we have to calculate the probabilities:

Box $-P($ yellow $)=3=0.43$
7

Jar $-P($ yellow $)=5=0.45$
11

The jar gives the best chance of choosing a yellow ball.
Now try the following questions:

Question	Answer
Two football teams are having a match and each team is given tickets for their fans. Team A has 43 fans and has 25 tickets Team B has 36 fans and has 20 tickets Which team has a better chance of their fan getting a ticket?	
Three golfers compare their winning records: Golfer A has won 6 out of his 10 games Golfer B has won 4 out of his 9 games Golfer C has won 7 out of his 12 games. Which golfer has the best winning record?	
Two dancers are in the final of a competition. Dancer A has won 7 out of her last 9 competitions Dancer B has won 6 out of her last 7 competitions. Which dancer has the best winning record?	

How did you get on?
\checkmark Do you understand what probability is?
\checkmark Can you calculate probabilities?
\checkmark Ca you compare the probabilities and solve problems involving probability?
Now you're ready to try assessment questions 16 and 17.

[^0]:

