

Numeracy

Applications of Mathematics

Mary Russell School

Name:
Class:
Teacher:

Quick Recap	3
Writing numbers in words	5
Four Operations	7
Addition	8
Subtraction	14
Multiplication	20
Mixed Problems	24
Percentages	30
Time	38
Capacity	41
Scales	46
Information Handling	26

Quick Recap
Times Tables

1 X	$2 X$	$3 x$	$4 X$	$5 x$
$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$
$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$
$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$
$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$
$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$
$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	$4 \times 6=24$	$5 \times 6=30$
$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$
$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$
$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$
$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$
$1 \times 11=11$	$2 \times 11=22$	$3 \times 11=33$	$4 \times 11=44$	$5 \times 11=55$
$1 \times 12=12$	$2 \times 12=24$	$3 \times 12=36$	$4 \times 12=48$	$5 \times 12=60$
$6 \times$	$7 X$	$8 \times$	$9 X$	$10 \times$
$6 \times 1=6$	$7 \times 1=7$	$8 \times 1=8$	$9 \times 1=9$	$10 \times 1=10$
$6 \times 2=12$	$7 \times 2=14$	$8 \times 2=16$	$9 \times 2=18$	$10 \times 2=20$
$6 \times 3=18$	$7 \times 3=21$	$8 \times 3=24$	$9 \times 3=27$	$10 \times 3=30$
$6 \times 4=24$	$7 \times 4=28$	$8 \times 4=32$	$9 \times 4=36$	$10 \times 4=40$
$6 \times 5=30$	$7 \times 5=35$	$8 \times 5=40$	$9 \times 5=45$	$10 \times 5=50$
$6 \times 6=36$	$7 \times 6=42$	$8 \times 6=48$	$9 \times 6=54$	$10 \times 6=60$
$6 \times 7=42$	$7 \times 7=49$	$8 \times 7=56$	$9 \times 7=63$	$10 \times 7=70$
$6 \times 8=48$	$7 \times 8=56$	$8 \times 8=64$	$9 \times 8=72$	$10 \times 8=80$
$6 \times 9=54$	$7 \times 9=63$	$8 \times 9=72$	$9 \times 9=81$	$10 \times 9=90$
$6 \times 10=60$	$7 \times 10=70$	$8 \times 10=80$	$9 \times 10=90$	$10 \times 10=100$
$6 \times 11=66$	$7 \times 11=77$	$8 \times 11=88$	$9 \times 11=99$	$10 \times 11=110$
$6 \times 12=72$	$7 \times 12=84$	$8 \times 12=96$	$9 \times 12=108$	$10 \times 12=120$

Measurement

The units we use for measuring distances are millimetres (mm), centimetres (cm), metres (m) and kilometres (km).
$1 \mathrm{~cm}=10 \mathrm{~mm}$
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~km}=1000 \mathrm{~m}$

To convert between units:
mm

cm

m

km
km

m

cm

mm

The units we use for measuring weight are grams (g) and kilograms (kg).
$1 \mathrm{~kg}=1000 \mathrm{~g}$

To convert between them:

g

kg
kg

g

The units we use for measuring liquids are millilitres (ml) and litres (I)
$11=1000 \mathrm{ml}$

To convert between them:
ml
I

I

ml

Writing Numbers

Learning Intention

To write numbers in words and figures

Success Criteria

\checkmark Understand place value
\checkmark Given figures be able to write numbers in words

\checkmark Given numbers in words be able to write in figures

Think back to place value, here's a reminder of the columns:

Writing numbers in words
For example:
2,300 - Two thousand, three hundred.
45, 850 - Forty five thousand, eight hundred and fifty
2,458 - Two thousand, four hundred and fifty eight

Complete the following:

6,700 - \qquad

7,380 - \qquad

9,450 \qquad

11,468 - \qquad

5,467

\qquad

Writing numbers in figures
For example:
Three thousand, six hundred and twenty two - 3,622
Fifteen thousand, nine hundred and four - 15,904

Complete the following:

Seven thousand, six hundred and fifty - \qquad

Three thousand, five hundred and twenty seven - \qquad

Fourteen thousand, two hundred and ninety \qquad

How did you get on?
\checkmark Do you remember and understand place value?
\checkmark Can you write numbers in words?
\checkmark Can you write numbers in figures?

Now you're ready to try assessment question 5a.

Four Operations

Learning Intention

To use,,$+- x$ and \div to solve problems

Success Criteria

\checkmark Select the appropriate operation to carry out calculations
\checkmark Use the selected operation appropriately
\checkmark Remember the units

The four operations are addition, subtraction, multiplication and division. Here are some other words for them:

Addition

If we set out addition calculations as 'house sums' it means that the columns (HTU) are in the correct order. We start with the units column at the left hand side.

Now try these without a calculator:

$\begin{array}{r} 21 \\ +23 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ +62 \\ \hline \end{array}$	$\begin{array}{r} 24 \\ +76 \\ \hline \end{array}$
$\begin{array}{r} 124 \\ +44 \\ \hline \end{array}$	$\begin{array}{r} 523 \\ +79 \\ \hline \end{array}$	$\begin{array}{r} 457 \\ +28 \\ \hline \end{array}$
$\begin{array}{r} 685 \\ +784 \\ \hline \end{array}$	$\begin{array}{r} 784 \\ +489 \\ \hline \end{array}$	$\begin{array}{r} 398 \\ +416 \\ \hline \end{array}$
$\begin{array}{r} 247 \\ +485 \\ \hline \end{array}$	$\begin{array}{r} 684 \\ +374 \\ \hline \end{array}$	$\begin{array}{r} 924 \\ +758 \\ \hline \end{array}$
$\begin{array}{r} 758 \\ +286 \\ \hline \end{array}$	$\begin{array}{r} 846 \\ +298 \\ \hline \end{array}$	$\begin{array}{r} 748 \\ +385 \\ \hline \end{array}$
$\begin{array}{r} 285 \\ +865 \\ \hline \end{array}$	$\begin{array}{r} 146 \\ +978 \\ \hline \end{array}$	$\begin{array}{r} 785 \\ +292 \\ \hline \end{array}$

We can also be asked problems in words for example:
Lauren collects shells, she has 86 shells. Her friend, Rachel, gives her 79. How many
shells does she have in total?
For this we have to work out which operation to use, the clue is the word 'total', so we're adding, it's best to set the numbers out in a house sum:

86
$+79$
165

Try the questions below and show your working in the box opposite without a calculator:

Question	Working and Answer
Sophie and Ted are collecting football stickers. Ted has 56 and Sophie has 63. How many do they have altogether?	
A total of 93 fans attended the pre-game signing of the grand final. A further 59 fans arrived five minutes later. How many fans attended the signing altogether?	
A total of 68 fans watched the first game of the Championship in the corporate box. The next time they played, there were 73 fans watching in the corporate box. How many fans were in the corporate box in both games?	
Chloe Watson is 180 cm and Maddy Robinson is $165 c m ~ t a l l . ~ H o w ~ t a l l ~ a r e ~ t h e ~ g i r l s ~ a l t o g e t h e r ? ~$	
Two netball players need to get on a plane to travel for their next netball match. Kimberlee buys a plane ticket for $£ 37$ return. Her team mate, Laura, buys a first-class plane ticket for $£ 74$ return. If the coach needs to pay for their flights, how much needs to be paid?	

We might also have to add more than two numbers together. For example,
Amy steel loves her fruit salad. She goes to the shops and buys 12 bananas, 13 apples and 27 oranges. How much fruit did she buy in total?

We put the numbers in a house sum and add as before:

12
13 $+27$ $\frac{52}{1}$

Amy bought 52 pieces of fruit.

Try the questions below without a calculator and show your working in the box opposite:

Question	Working and Answer
How many Championship games were played if Clare played 44, Laura played 34 and Gretel played 29?	
In 2018, Susan scored 18 goals. In 2019, she scored 23 goals. In 2020, she scored 26 goals. Over these 3 years, how many goals did Susan score?	
For his birthday, Jacob received $£ 15$ from his gran, $£ 25$ from his uncle and $£ 50$ from his mum. How much did he receive in total?	
Megan is making a cake and needs to go shopping for some ingredients. The flour costs $42 p$, butter $33 p$ and egg 24p. How much does she spend on ingredients?	
Alfie is growing vegetables in his garden, he has 12 carrots, 23 spring onions and 28 potatoes. How many vegetables has he grown in total?	

Addition with a calculator

Now you can use the calculator. For example:
$£ 1546+£ 2485=£ 4031$

Now try these and write the answers in the box opposite:

Question	Answer
$£ 5,678+£ 6,849$	
$£ 4,753+£ 7,462$	
$\$ 4,759+\$ 6,852$	
$\$ 84,264+\$ 7,154$	
$£ 68,795+£ 3,942$	
$£ 15,248+£ 2,457$	
$£ 45,549+£ 7,892$	
$\$ 78,654+\$ 24,675$	
$£ 36,465+£ 48,685$	

Let's try some wordy questions - you can use a calculator here.
For example,
There are 657 trees in a forest, another 156 are planted.
How many trees are there in total?
$657+156=813$ trees

We can use the decimal point in our calculator to add amounts of money for example,
Lucy bought some fruit at the supermarket, she bought bananas at $£ 1.05$ and apples at E2.45. How much did she spend altogether?
$£ 1.05+£ 2.45=£ 3.50$

Try these questions below and write the working and answers in the box opposite.

You can use a calculator!

Question	Working and Answer
Jessica found 634 shells on the beach; Georgia found 503 shells. How many shells do the girls have altogether?	
Hollie, Taylor and Lily are going out for lunch. Hollie’s costs $£ 4.50$, Taylor’s costs $£ 4.20$ and Lily’s costs $£ 3.75$. How much do the girls pay for lunch altogether?	
An empty pan weighs $2.7 \mathrm{~kg}, 3.6 \mathrm{~kg}$ of potatoes are put in the pan. What does it weigh altogether?	
Three judges in the skating competition award Anya with scores of $8.6,9.4$ and 8.7. What is her combined score?	

Gemma walked 1.6km from her home to the supermarket, she then walked 1.3km to the dentist, and 1.5km back home. How far did she walk altogether?	
A delivery van weighs 458.9kg and the parcels inside weigh 67.8kg. What is the total weight?	
Sylvia bought a top for $£ 7.85$ and a pair of trousers for $£ 15.99$. What did she spend altogether?	
There were 103 people on a train, at the first stop, 46 people got on the train. How many people are on the train now?	

Subtraction

The easiest way to set out a subtraction calculation is as we did above with our columns lined up. We must make sure the big number is on the top and the smaller number is underneath, then to carry out the subtraction we may need to borrow from the next column. For example,

Now try these without a calculator:

$\begin{array}{r} 45 \\ -27 \\ \hline \end{array}$	$\begin{array}{r} 34 \\ -29 \\ \hline \end{array}$	$\begin{array}{r}74 \\ -46 \\ \hline\end{array}$
135	427	842
-47	-154	-137
487	365	682
$\underline{-439}$	-78	-56
485	385	584
-76	-98	-475
627	547	673
-428	$\underline{-279}$	-194

Subtraction with a calculator

We can use the calculator to help us to do some subtraction calculations.
For example:
£1,576-£985 = £591

Try the following with a calculator, write the answers in the box opposite:

Question	Answer
$£ 5,964-£ 2,452$	
$£ 5,493-£ 3,845$	
$\$ 4,746-\$ 2,914$	
$\$ 7,957-\$ 3,184$	
$£ 2,716-£ 2,475$	
$£ 4,854-£ 2,746$	
$£ 5,168-£ 3,892$	
$£ 63.95-£ 48.27$	
$£ 56.25-£ 24.61$	
$£ 846.50-£ 78.30$	

Now let's try some wordy questions.
For example,

There are 310 passengers on a plane from Edinburgh to Madrid via Amsterdam, 56 got offin Amsterdam. How many passengers are left on the plane?

Set out as above:

There are 254 passengers left on the plane.

Now try these without a calculator:

Question	Answer
The Smith family set out of a journey of 272 miles. After travelling 149 miles, they break down. How far do they still have to travel?	
Bob bought a bike for $£ 450$, he later sold it for £375. How much money did he lose?	
There were 156 cars in a race, 124 completed the race. How many didn’t complete the race?	

Multiplication

Times tables are very useful here! If you need a wee reminder, you'll find all the times tables at the beginning of the booklet.

We can do multiplications without a calculator, for example:

43
$\mathrm{x}_{1} 4$
172

Firstly we do $4 \times 3=12$, we need to carry the

1. Then, we do $4 \times 4=16$, add on the $1=17$.

Now try these without a calculator:

$\begin{array}{r} \hline 26 \\ \times 6 \\ \hline \end{array}$	$\begin{array}{r} 32 \\ \times 3 \\ \hline \end{array}$	$\begin{array}{r}45 \\ \times 5 \\ \hline\end{array}$
34	63	28
x 7	+6	+4
33	83	46
+4	+66	x8
53	46	58
x 4	x 7	+9
42	57	74
+6	+3	+7
66	93	67
$\times 8$	x 7	+4

Multiplication with a calculator

We can do more difficult multiplication calculations with a calculator:
For example:
$16.3 \times 6=97.8$
Note: we can also do this without a calculator as we did above.
16.3
31×6
97.8

Try the following and write the answer in the box opposite - you can use a calculator if you like!

Question	Answer
25.4×7	
48.5×8	
62.4×4	
85.9×6	
77.6×8	
94.8×3	
84.7×9	
74.3×7	
98.7×8	

Now let's try some wordy multiplication problems.
For example,
chloe spends E3.65 on her lunch every day.
How much does this cost her per week?
$£ 3.65 \times 7=£ 25.50$ - Chloe spends $£ 25.50$ on her lunches every week.

Now try these questions and write your working and answer in the box opposite - you can use a calculator if you wish.

Question	Working and Answer
A car travels at an average speed of 45 miles per hour. How far will it travel in 4 hours?	
Martha likes to cycle, the track she cycles on is 12km long. She cycles this track every day for a week (7 days). How far has she cycled?	
Samuel earns $£ 8.50$ per hour. How much will he earn if he works for 35 hours?	
Rebecca is wallpapering her living room; she needs 6 rolls of wallpaper. Each roll costs $£ 13.42$, how much does she spend in total?	
Michael is selling some books. He has 45 books and is selling them for $£ 6.50$ each. How much money will he make if he sells all his books?	

Division

Division is the opposite of multiplication, so your times tables are useful here too!
We can use the 'bus stop' method, for example:

Now try these, write your working and answer in the box opposite:

Question	Answer
$48 \div 6$	
$72 \div 9$	
$49 \div 7$	
$270 \div 6$	
$471 \div 3$	
$204 \div 6$	
$203 \div 7$	
$608 \div 8$	

You can also use a calculator to tackle some more difficult questions, for example:
$453 \div 6=75.5$

Now try these on your calculator:

$247.1 \div 7$	
$436.8 \div 7$	
$157.2 \div 3$	
$168.7 \div 7$	
$385.2 \div 9$	
$324.5 \div 11$	
$836.8 \div 16$	
$1,839.6 \div 21$	
$9,400.2 \div 62$	

Now let's try some wordy questions, for example:
Alan earns E247 for working 26 hours. How much does he earn per hour?
$247 \div 26=£ 9.50$ per hour

Now try the questions below and write your working and answer in the box opposite.

You can use a calculator if you like.

Question	Working and Answer
George wants to cycle a route which is 100 km long. He hopes to complete this in 4 days. How far will he need to cycle each day?	
Andrea has a budget of $£ 200$ to purchase 40 swimming floats. How much can she spend on each one?	
£228.20 is shared equally between 7 people. How much does each person get?	

Amber took 4 friends to pick strawberries, together they picked 85 strawberries. If they divide them equally between them, how many will each person get? Hint - read the question carefully!	
John has 55 cakes; he wants to serve them on plates which each hold 11 cakes. How many plates will he need?	

Mixed Problems

Here you may have to add, subtract, multiply or divide.
You need to decide which to operation to use and complete the calculation.
For example,

Two tables are placed together to form a larger one. If the first table is 67.4 cm long and the second table is 56.8 cm long, what is the total length?

Here we are adding so $67.4+56.8=124.2 \mathrm{~cm}$
Now try the questions below, write your working and answer in the box opposite:
You can use a calculator.

Question	Working and Answer
A piece of wood is $37 \cdot 4 \mathrm{~cm}$ long. If $12 \cdot 7 \mathrm{~cm}$ is cut off from one end what length remains?	
A child places 5 toy bricks of length $14 \cdot 6 \mathrm{~cm}$ in a straight line. What is the total length?	
A piece of ribbon $114 \cdot 8$ cm long is shared equally among 7 girls. What length should each girl receive?	

| What length of shelf is needed to hold books
 with thicknesses of $6 \cdot 3 \mathrm{~cm}, 7 \cdot 4 \mathrm{~cm}, 1 \cdot 8 \mathrm{~cm}, 2 \cdot 8$
 cm and $4 \cdot 9 \mathrm{~cm}$? |
| :--- | :--- |

How did you get on?
\checkmark Can you select the appropriate operation to carry out calculations?
\checkmark Can you use the selected operation appropriately?
\checkmark Did you remember the units?

Now you're ready to try assessment questions $2,5 \mathrm{~b}, 6,8,9$.

Percentages

Learning Intention

To calculate percentages of an amount and use this to solve problems

Success Criteria

\checkmark Understand how to calculate a percentage
\checkmark Calculate the percentage
\checkmark Use this to solve problems

\checkmark Remember the units

PERCENT literally means PER HUNDRED, so we're going to be dividing by 100 here. You can use a calculator.

For example,
Find 25% of $£ 120$

Now try the following questions, write your working and answers in the box opposite. You can use a calculator.

Question	Working and Answer
30% of $£ 60$	
5% of 98 kg	

16\% of 54ml	
64\% of $£ 85$	
50\% of 166 m	
16\% of $£ 250$	
15\% of 300 miles	
7\% of 400 m	
31\% of $£ 720$	
34% of 340litres	
16\% of $£ 240$	
52% of $£ 63$	
33% of 900m	
37% of 7 kg	
4\% of $£ 63$	

Percentage Rise/Fall

Sometimes we need to calculate percentages to solve problems.
For example,
A mobile phone costs E150, it is on sale wíth a 20% discount.
(a) How much is the discount?
(b) How much does the phone cost now?
(a) $20 \div 100 \times 150=30$
(b) $150-30=£ 120$

So here we are calculating the percentage as normal then either adding or subtracting from the original amount.

We need to think about whether we add or subtract.
If its an increase, then we add.
If it's a decrease, then we subtract.

Try the questions below, write your working and answer in the box opposite.

Question	Working and Answer
A bat colony has 40 bats. Over the breeding season, the population increases by 30\%. (a) How many new bats were born? (b) How many bats are there in the colony now?	
A petri dish contains 240 bacteria. These increase overnight by 23\% (a) How many extra bacteria are there? (b) How many bacteria are there altogether the next morning?	
A company gives all its workers a 5\% pay rise. Joan earns $£ 240$ per week. (a) How much extra does Joan earn? (b) What does Joan earn with her new payrise?	

| A clothes shop reduces its prices by 15%. A coat
 originally cost $£ 45$.
 (a) How much has the coat been reduced
 by? |
| :--- | :--- |
| (b) What is the new price of the coat? |

How did you get on?
\checkmark Do you understand how to calculate a percentage?
\checkmark Can you calculate percentages?
\checkmark Can you use this to solve problems?
\checkmark Did you remember the units?

Now you're ready to try assessment question 1

Time

Learning Intention

To convert between 12- and 24-hour times and solve problems involving time

Success Criteria

\checkmark Understand how to convert between 12- and 24-hour time
\checkmark Remember am/pm for morning and afternoon times
\checkmark Remember 4 digits for 24-hour time
\checkmark Use your knowledge of time to calculate time intervals and add on time

12- and 24-hour time

There are two ways of writing time, 12-hour time and 24-hour time, for example,
8.30 pm is the same as 2030 hours - both of these mean half past 8 in the evening.

Converting between 12-hour time and 24-hour time:

AM

For am times (in the morning), 12- and 24-hour times look very similar:
9.15am = 0915 hours
10.40am = 1040 hours

We just need to remember that 24-hour time ALWAYS has 4 digits.

PM

For pm times (in the afternoon), we need to add on 12 to the hours:

> So, for example
1.30 pm

7.15pm

$1+12=13$
$7+12=19$
so it becomes 1330 hours so it becomes 1915 hours

24-hour time

```
    0}1
    a.m.
                                    p.m.
    121[2
12-hour time
```

Now convert the following 12-hour times to 24-hour time:

12-hour time	24-hour time
10.30 am	
7.15 pm	
9.20 am	
12 am (midnight)	
1.50 am	
11.45 am	
7.20 pm	
7.35 pm	

3.30 pm	
7.30 pm	
9.20 am	
3.50 am	
6.45 pm	
8.55 pm	
10.45 am	
12.25 pm	
12 pm (midday)	

ets convert 24-hour time to 12-hour time:
Remember to write am or pm!

12-hour time	24 -hour time
	1240 hours
	0000 hours
	2145 hours
	0755 hours

	1235 hours
	1440 hours
	0645 hours
	2230 hours
	0530 hours
	1715 hours
	0925 hours
	1130 hours
	1950 hours
	0430 hours
	1845 hours
	0030 hours
	1200 hours
	1355 hours
	2020 hours
	2350 hours
	1010 hours

Time Intervals

It's also very useful to be able to work out how much time has passed, or to 'add' on time.
For example,
sally went for a walk at 2.10 pm and got home at 4.25 pm .
How long was she walking for?
You may already be able to do this mentally but if not, the method below will always work.

	Hours	Minutes
2.10pm -3.00 pm	0	50
$3.00 \mathrm{pm}-4.00 \mathrm{pm}$	1	0
4.00pm -4.25 pm	$\underline{0}$	25
TOTAL	1 hour	75 minutes
	$\underline{2}$ hours 15 minutes in 1 hour so	

Try the questions below and write your working and answer in the box opposite:

Question	Answer
Jenny started watching TV at 7.30pm and stopped at 9.15pm. How long was she watching TV for?	
Mike was playing his game from 11.30am to 1.10pm, how long was he playing his game?	
Ken played football with his friends from 10.20am to 12.00pm. How long was he playing football?	

Lauren took part in a sponsored cycle which started at 1120 hours. She finished at 1450 hours. How long was she cycling for?	
Rhonda read her book from 5.40pm until 7.20pm. How long was she reading her book?	
Rosie likes to work in her garden. She started at 9.50am and finished at 5.40pm. How long was she gardening for?	

We can also be asked to 'add' on time.
For example,
A train left Aberdeen at 9.50 am and arrived in Edinburgh 2 hours and 35 minutes later. What time did it arrive?

As above, you may be able to do this mentally but if not then you can use this method:
$9.50 \mathrm{am}+2$ hours 35 mins
2 hours after 9.50am is 11.50am
11.50am + 35 mins

12.25 pm

The train arrived in Edinburgh at 12.25 pm .

Try the following questions and write your working and answer in the box opposite:

Question	Answer		
Chloe got on the bus at 10.45am, her journey took 55 minutes. When did she arrive?			Chris met his friends at 1435 hours. He stayed
:---			
for 2 hours 15minutes. When did he leave?			
Pippa walked her dog for 35 minutes. She left			
at 5.45pm, when did she get home?			

```
Ian played golf for 3 hours 35 minutes. He teed
off at 10.50am, when did he finish?
```

How did you get on?
\checkmark Do you understand how to convert between 12-and 24-hour time?
\checkmark Did you remember am/pm for morning and afternoon times?
\checkmark Did you remember 4 digits for 24 -hour time?
\checkmark Did you use your knowledge of time to calculate time intervals and add on time?

Now you're ready to try assessment question 3

Capacity

Learning Intention

To convert between ml and I and solve problems involving capacity

Success Criteria

\checkmark Understand how to convert between ml and I
\checkmark Remember $1000 \mathrm{ml}=1$ l
\checkmark Solve problems involving capacity

Capacity is essentially the amount that something can hold and this is generally measured in millilitres (ml) or litres (I).

The important thing to remember is there are 1000 ml in 11 , from the recap pages at the front of the booklet:

To convert between them:
ml

ml
I

For example,
What is 1420 ml in I?
$1420 \div 1000=1.42 \mid$

What is 2.35 I in ml ?
$2.35 \times 1000=2350 \mathrm{ml}$.

Try the following questions below and write your working and answer in the box opposite:

Question	Working and Answer
What is 1850 ml in I?	

What is 2.37 l in ml ?	
What is 4500 ml in l ?	
What is 1250 ml in l ?	
What is 6.5 l in ml ?	
What is 2.845 l in ml ?	
What is 560 ml in l?	

We can use our knowledge of capacity to solve problems.
For example,
How many 200 ml cups can you fill from a 1 ljug?
Convert 1 I to ml
$1 \times 1000=1000$
Now divide:

$1000 \div 200=5$ cups

Now try the following questions, write your working and answer in the box opposite:

Question	Working and Answer
You have 1l of water, can you fill 4 cups that each hold 300 ml ?	

Three different sized cups hold 200ml, 250ml and 300ml. If you have 1l of water, could you fill all 3 cups?	
You have a 2l bottle of diet coke. How many 250ml cups can you fill from it?	
Michael has 1l of orange juice to split equally between 4 glasses. How much juice is in each glass?	
George has 3 containers which hold 450ml, 350 ml and 250 ml . She has 11 of soup, will she be able to fill all her containers?	

How did you get on?
\checkmark Do you understand how to convert between ml and l ?
\checkmark Do you remember $1000 \mathrm{ml}=1$ l?
\checkmark Can you solve problems involving capacity?

Now you're ready to try assessment question 4.

Reading Scales

Learning Intention

To read scales accurately

Success Criteria

\checkmark Work out the increments that scale goes up in
\checkmark Interpret what the scale points to
\checkmark Remember your units

Scales are very useful as they display measurements of weights, liquids and temperatures.
When we read scales, we must first work out what the scale is going up in (the increments). With this scale below, can you see that 0 is marked at the bottom and there's 5 little sections until you get to 10 ? This means that the scale goes up in $2 s$ so every little line is 2 . Try to complete the boxes below, the first one is 4 g .

Scales can be circular like the one below. As we did with the last question, we need to work out what the scale goes up in. Here there are 10 little sections between 0 and 10 so each little section is 1 .

What is the scale pointing to?

Now use a ruler to draw arrows on the scale to show:
a) 22 g
b) 48 g
c) 65 g
d) 7 g
e) 99 g

Now try the following scales:
Remember to work out what the scales go up in.

Q1

Q2

A	
B	
C	
D	

Q3

A	
B	
C	
D	

A	
B	
C	
D	

Q5

A	
B	
C	
D	

Q6

\qquad -

\circ

-

"c

How did you get on?
\checkmark Did you work out the increments that scale goes up in?
\checkmark Did you interpret what the scale points to?
\checkmark Did you remember your units?

Now you're ready to try assessment question 7

Information Handling

Learning Intention

To interpret graphs, charts and tables and be able to answer questions on them

Success Criteria

\checkmark Understand how to read graphs, charts and tables
\checkmark Read scales correctly
\checkmark Answer questions based on the graphs, charts and tables

Bar Charts

In the Manage Money and Data unit, we organise data into frequency tables and draw graphs. In this unit, we interpret that information. Bar Charts are a good way of displaying information and look like:

This displays the information gathered from a survey on what pupils liked for breakfast in Breakfast club.

We can see that the most popular choice of breakfast is cereal with 8 pupils choosing this option.

The least popular choice was fruit with just 1 pupil choosing this option.
(a) How many pupils chose porridge?

(b) How many more pupils chose toast than fruit?

1. Below is a bar chart showing favourite after school activities:

Now answer the following questions based on the bar chart:

Question	Answer
What is the most popular activity?	
What is the least popular activity?	
How many pupils chose football?	
How many more chose swimming than	
homework?	
How many pupils were asked altogether?	

2. Below is a graph of fruit sold in a supermarket.

Now try some questions based on the bar chart:

Question	Answer	Number
How many of each fruit were chosen?	Fruit	
	Kiwi	Apple
	Banana	
	Grapes	
	Orange	
How many more apples than oranges were sold?		
What was the most popular fruit?		
What was the least popular fruit?		

How many pieces of fruit were sold altogether?
3. A survey was done on the colours of cars in the car park. Here is a bar chart of the results:

Now try the questions below:

Question	Answer How many of each colour of car were in the car park?	Colour
	Red	Number
	Blue	
	Silver	
	Black	

How many cars were in the carpark altogether?	
How many more black cars than blue cars were in the car park?	

Pie Charts

Pie Charts are another way of displaying data.
For example,
The pie chart below shows whether computers in a computer lab were left on or off.

(a) What fraction of the computers were left on?

We can see from the pie chart that 4 of the 10 segments are shaded so that means $4 / 10$ of the computers are left on.
(b) If there are 20 computers in the lab. How many are on?

So here we need to find $4 / 10$ of 20
$20 \div 10 \times 4=8$ computers.

1. 50 pupils were offered an apple or a banana. The pie chart below shows what they chose:

Question	Answer
What fraction of pupils chose a banana?	
How many people chose a banana?	
What fraction of pupils chose an apple?	
How many people chose an apple?	
The next day the pupils were offered an apple or a banana again. This time 2/5 of them chose an apple. How many pupils is this?	

2. A theatre can hold 80 people. The pie chart below shows how many seats were taken at a recent event:

Question	Answer
What fraction of seats were taken?	
How many seats were taken?	
What fraction of seats were empty?	
How many seats were empty?	

3. 60 people were asked whether they preferred a cake or a biscuit. The results are displayed in the pie chart below:

Question	Answer
What fraction of people preferred a cake?	
How many people preferred a cake?	
What fraction of people preferred a biscuit?	
How many people preferred a biscuit?	
Another 60 people were asked the same	
question and 5/6 of them preferred a cake.	
How many people is this?	

Tables

Sometimes information is displayed in a table and we need to be able to interpret this information.
For example:
Here are results from a long jump competition, all measurements in cm:

	1st Jump	2nd Jump	3rd Jump	4th Jump
Abby	145	164	154	187
Karla	187	197	168	201
Stacey	149	168	179	189
Flo	155	175	187	177

(a) How far did Karla jump on her $2^{\text {nd }}$ jump?

Looking at the table, go along Karla's row until you get to her $2^{\text {nd }}$ jump, 197 cm .
(b) Who won the competition?

We're looking for the longest jump so 201 cm - Karla won.
(c) Who improved with every jump?

Looking at the table, Stacey jumps further every time so she improved with every jump.

1. The table below shows who is able to babysit on which nights:

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Clare							
Rebecca							
Carol							

Looking at the table, answer the following questions:

Question	Answer
What nights can Clare babysit?	
Who can babysit on a Wednesday night?	
Who can babysit on the most nights?	
Which nights have the least choice for a babysitter?	

2. The table below shows eye colour information for pupils in S 6 :

Eye Colour	Number of boys	Number of girls
Blue	7	
Brown	5	8
Green	2	6

Now answer the following questions:

Question	Answer
How many boys have green eyes?	
How many girls have blue eyes?	
How many girls are in the class?	
How many pupils have brown eyes?	
How many pupils are in S6 altogether?	

3. Below is a table shows some college students. It shows their age, height and the distance they live from college.

		Height (cm)	Disatnce from college (miles)
Anya	24	164	2
Nathan	22	178	4
Sarah	26	170	3
Lucy	19	168	1

The college is launching a project and is looking for students to take part. They need someone who is 24 or younger, taller than 165 cm and lives 2 miles or less from college.

Question	Answer
Who can take part in this project?	
Why can't the others take part?	

How did you get on?
\checkmark Do you understand how to read graphs, charts and tables?
\checkmark Did you read scales correctly?
\checkmark Did you answer questions based on the graphs, charts and tables?

Now you're ready to try assessment questions 10, 11 and 12.

