<u>Vectors</u>

Higher Maths Exam Questions

Source: 2019 P1 Q9 Higher Maths

Vectors $\mathbf u$ and $\mathbf v$ have components $\begin{pmatrix} p \\ -2 \\ \mathbf A \end{pmatrix}$ and $\begin{pmatrix} 2p+16 \\ -3 \\ 6 \end{pmatrix}$, $p \in \mathbb R$. (1)

- (a) (i) Find an expression for **u.v.**
 - (ii) Determine the values of p for which \mathbf{u} and \mathbf{v} are perpendicular.
- (b) Determine the value of p for which \mathbf{u} and \mathbf{v} are parallel.

Answers: $(a)(i) 2p^2 + 16p + 30$ (ii) p = -5 & -3 (b) p = -32

Source: 2019 P2 Q3 Higher Maths

E,ABCD is a rectangular based pyramid. (2)

$$\overrightarrow{\mathsf{AB}} = \mathbf{p}, \, \overrightarrow{\mathsf{AD}} = \mathbf{q} \text{ and } \overrightarrow{\mathsf{AE}} = \mathbf{r}.$$

(a) Express \overrightarrow{BE} in terms of \mathbf{p} and \mathbf{r} .

Point F divides BC in the ratio 3:1.

(b) Express vector \overrightarrow{EF} in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} .

Answers: (a) $\overrightarrow{BE} = -p + r$ (b) $\overrightarrow{EF} = p - r + \frac{3}{4}q$ or equivalent

Source: 2019 P2 Q14 Higher Maths

- (3) The vectors \mathbf{u} and \mathbf{v} are such that
 - $|\mathbf{u}| = 4$
 - $|\mathbf{v}| = 5$
 - u.(u+v)=21

Determine the size of the angle between the vectors **u** and **v**.

Answer: $Angle = 75.5^{\circ} \text{ or } 1.31 \text{ radians}$

Source: 2018 P1 Q5 Higher Maths

- (4) A(-3,4,-7), B(5,t,5) and C(7,9,8) are collinear.
 - (a) State the ratio in which B divides AC.
 - (b) State the value of t.

Answers: (a) Ratio 4:1 (b) t = 8

Source: 2018 P1 Q12 Higher Maths

- (5) Vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a} = 4\mathbf{i} 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = -2\mathbf{i} + \mathbf{j} + p\mathbf{k}$.
 - (a) Express 2a + b in component form.
 - (b) Hence find the values of p for which $|2\mathbf{a} + \mathbf{b}| = 7$.

Answers: (a)
$$\begin{pmatrix} 6 \\ -3 \\ 4+p \end{pmatrix}$$
 (b) $p = -2, -6$

Source: 2018 P1 Q9 Higher Maths

(6)

The diagram shows a triangular prism ABC, DEF.

(a) Express \overrightarrow{BC} in terms of **u** and **t**.

M is the midpoint of BC.

(b) Express \overrightarrow{MD} in terms of \mathbf{t} , \mathbf{u} and \mathbf{v} .

$$(a) \; \overrightarrow{BC} = -t + u$$

Answers: (a)
$$\overrightarrow{BC} = -t + u$$
 (b) $\overrightarrow{MD} = -\frac{1}{2}t - \frac{1}{2}u + v$

Source: 2018 P2 Q2 Higher Maths

(7)

Vectors \mathbf{u} and \mathbf{v} are defined by $\mathbf{u} = \begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -7 \\ 8 \\ 5 \end{pmatrix}$.

- (a) Find u.v.
- (b) Calculate the acute angle between ${\bf u}$ and ${\bf v}$.

(a)
$$u_1v = 24$$

Answers: (a)
$$u.v = 24$$
 (b) 66.38° or 1.16 radians

Source: 2017 P1 Q5 Higher Maths

(8)

Vectors \mathbf{u} and \mathbf{v} are $\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix}$ respectively.

- (a) Evaluate u.v.
- (b)

Vector w makes an angle of $\frac{\pi}{3}$ with u and $|\mathbf{w}| = \sqrt{3}$. Calculate u.w.

Answers: (a) u.v = 1 (b) u.w = 4.5

Source: 2016 P1 Q7 Higher Maths

(9)

Three vectors can be expressed as follows:

$$\overrightarrow{FG} = -2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}$$

$$\overrightarrow{GH} = 3\mathbf{i} + 9\mathbf{j} - 7\mathbf{k}$$

$$\overrightarrow{EH} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$$

- (a) Find $\stackrel{\rightarrow}{\mathrm{FH}}$.
- (b) Hence, or otherwise, find \overrightarrow{FE} .

Answers: (a) u.v = 24 (b) 66.38° or 1.16 radians

Source: 2017 P2 Q5 Higher Maths

(10)

In the diagram, $\overrightarrow{PR} = 9\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{RQ} = -12\mathbf{i} - 9\mathbf{j} + 3\mathbf{k}$.

(a) Express \overrightarrow{PQ} in terms of i, j and k.

The point S divides QR in the ratio 1:2.

- (b) Show that $\overrightarrow{PS} = \mathbf{i} \mathbf{j} + 4\mathbf{k}$.
- (c) Hence, find the size of angle QPS.

Answers: (a) - 3i - 4j + 5k (b)*Proof* (c) 45.6° or 0.795 radians

Source: 2016 P1 Q11 Higher Maths

- (11)
- (a) A and C are the points (1, 3, -2) and (4, -3, 4) respectively. Point B divides AC in the ratio 1:2. Find the coordinates of B.
- (b) $k\overrightarrow{AC}$ is a vector of magnitude 1, where k > 0.

Determine the value of k.

Answers: (a) B (2, 1, 0) (b) $k = \frac{1}{2}$

(b)
$$k = \frac{1}{9}$$

Source: 2016 P2 Q5 Higher Maths

(12)

The picture shows a model of a water molecule.

Relative to suitable coordinate axes, the oxygen atom is positioned at point A(-2, 2, 5).

The two hydrogen atoms are positioned at points B(-10, 18, 7) and C(-4, -6, 21) as shown in the diagram below.

- (a) Express \overrightarrow{AB} and \overrightarrow{AC} in component form.
- (b) Hence, or otherwise, find the size of angle BAC.

Answers: (a)
$$\overrightarrow{AB} = \begin{pmatrix} -8 \\ 16 \\ 2 \end{pmatrix} \overrightarrow{BC} = \begin{pmatrix} -2 \\ -8 \\ 16 \end{pmatrix}$$
 (b) 104.3° or 1.82 radians

Source: 2015 P1 Q1 Higher Maths

(13)

Vectors $\mathbf{u} = 8\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = -3\mathbf{i} + t\mathbf{j} - 6\mathbf{k}$ are perpendicular.

Determine the value of t.

Answer: t = 9

Source: 2015 P2 Q6 Higher Maths

- (14) Vectors \mathbf{p} , \mathbf{q} and \mathbf{r} are represented on the diagram as shown.
 - BCDE is a parallelogram
 - ABE is an equilateral triangle
 - $|{\bf p}| = 3$
 - Angle ABC = 90°

- (a) Evaluate p.(q+r).
- (b) Express \overrightarrow{EC} in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} .
- (c) Given that $\overrightarrow{AE}.\overrightarrow{EC} = 9\sqrt{3} \frac{9}{2}$, find $|\mathbf{r}|$.

$$(a) p. (q + r) = 4.5$$

Answers: (a)
$$p.(q + r) = 4.5$$
 (b) $\overrightarrow{EC} = -q + p + r$ (c) $\frac{3\sqrt{3}}{\cos 30}$

$$(c) \frac{3\sqrt{3}}{\cos 30}$$

Source: Specimen P1 Q3 Higher Maths

(15)

In the diagram, P has coordinates (-6, 3, 9),

$$\overrightarrow{PQ} = 6\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}$$
 and $\overrightarrow{PQ} = 2\overrightarrow{QR} = 3\overrightarrow{RS}$.

Find the coordinates of S.

Answer: S(5, 25, -2)

Source: Specimen P2 Q1 Higher Maths

(16)

A square based right pyramid is shown in the diagram.

Square OABC has a side length of 60 units with edges OA and OC lying on the x-axis and y-axis respectively.

The coordinates of D are (30, 30, 80).

E is the midpoint of BD and F divides AB in the ratio 2:1.

- (a) Find the coordinates of E and F.
- (b) Calculate \overrightarrow{ED} . \overrightarrow{EF} .
- (c) Hence, or otherwise, calculate the size of angle DEF.

Answers: (a) E (45, 45, 40) F (60, 40, 0) (b) $\overrightarrow{ED} \cdot \overrightarrow{EF} = -1750$ (c) 154°

Source: Specimen P2 Q6 Higher Maths

(17)

The points A(0, 9, 7), B(5, -1, 2), C(4, 1, 3) and D(x, -2, 2) are such that AB is perpendicular to CD.

Determine the value of x.

Answer: x = -3

Source: Exemplar P2 Q5 Higher Maths

(18)

D,OABC is a square-based pyramid as shown.

O is the origin and OA = 4 units.

M is the mid-point of OA.

$$\overrightarrow{\mathsf{OD}} = 2\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}$$

- (a) Express \overrightarrow{OB} in terms of i and j and k.
- (b) Express \overrightarrow{DB} and \overrightarrow{DM} in component form.
- (c) Find the size of angle BDM.

Answers: (a) $\overrightarrow{OB} = 4i + 4j$ (b) $\overrightarrow{DB} = \begin{pmatrix} 2 \\ 2 \\ -6 \end{pmatrix}$ $\overrightarrow{DM} = \begin{pmatrix} 0 \\ -2 \\ -6 \end{pmatrix}$ (c) 40.3° or 0.703 radians

Source: Exemplar P2 Q6 Higher Maths

(19)

An equilateral triangle with sides of length 3 units is shown.

Vector ${\bf r}$ is 2 units long and is perpendicular to both vectors ${\bf p}$ and ${\bf q}$.

Calculate the value of the scalar product p.(p+q+r).

Answer: $p.(p + q + r) = \frac{27}{2}$