Circles

Higher Maths Exam Questions

Source: 2019 P1 Q3 Higher Maths

(1) Circle C₁ has equation $x^2 + y^2 - 6x - 2y - 26 = 0$.

Circle C_2 has centre (4,-2).

The radius of C_2 is equal to the radius of C_1 .

Find the equation of circle C_2 .

Answer: $(x-4)^2 + (y+2)^2 = 36$

Source: 2019 P1 Q16 Higher Maths

(2) The point P has coordinates (4,k).

C is the centre of the circle with equation $(x-1)^2 + (y+2)^2 = 25$.

- (a) Show that the distance between the points P and C is given by $\sqrt{k^2 + 4k + 13}$.
- (b) Hence, or otherwise, find the range of values of k such that P lies outside the circle.

Answers:

- (a) 1 identify centre
 - apply distance formula and demonstrate result

(b)
$$k < -6$$
, $k > 2$

- \bullet^1 (1, -2) stated or implied by \bullet^2
- $\sqrt{(4-1)^2 + (k-(-2))^2}$ leading to $\sqrt{k^2 + 4k + 13}$

Source: 2019 P2 Q15 Higher Maths

(3) A circle has centre C(8,12).

The point P(5,13) lies on the circle as shown.

(a) Find the equation of the tangent at P.

The tangent from P meets the y-axis at the point T.

- (b) (i) State the coordinates of T.
 - (ii) Find the equation of the circle that passes through the points C, P and T.

Answers: (a) y = 3x - 2

(b) (i) T(0.-2) (ii) $(x-4)^2 + (y-5)^2 = 65$

Source: 2018 P1 Q4 Higher Maths

(4)

The point K (8, -5) lies on the circle with equation $x^2 + y^2 - 12x - 6y - 23 = 0$.

Find the equation of the tangent to the circle at K.

Answer: $y = \frac{1}{4}x - 7$

Source: 2017 P1 Q2 Higher Maths

(5)

The point P(-2, 1) lies on the circle $x^2 + y^2 - 8x - 6y - 15 = 0$.

Find the equation of the tangent to the circle at P.

Answer: y = -3x - 5

Source: 2018 P2 Q5c Higher Maths

(6) PQR is a triangle with P(3,4) and Q(9,-2).

(a) Find the equation of L_1 , the perpendicular bisector of PQ.

The equation of L_2 , the perpendicular bisector of PR is 3y + x = 25.

(b) Calculate the coordinates of C, the point of intersection of L_1 and L_2 .

C is the centre of the circle which passes through the vertices of triangle PQR.

(c) Determine the equation of this circle.

(c)
$$(x-10)^2 + (y-5)^2 = 50$$

Source: 2018 P2 Q12 Higher Maths

(7) Circle C₁ has equation
$$(x-13)^2 + (y+4)^2 = 100$$
.
Circle C₂ has equation $x^2 + y^2 + 14x - 22y + c = 0$.

- (a) (i) Write down the coordinates of the centre of C_1 .
 - (ii) The centre of C_1 lies on the circumference of C_2 . Show that c=-455.

The line joining the centres of the circles intersects C_1 at P.

- (b) (i) Determine the ratio in which P divides the line joining the centres of the
 - (ii) Hence, or otherwise, determine the coordinates of P.

P is the centre of a third circle, C_3 . C_2 touches C_3 internally.

(c) Determine the equation of C₃.

Answers:

(a) (i)
$$(13, -4)$$

(ii) Substitute coordinates and process leading to c=-455

(b) (i)
$$3:2$$
 or $2:3$

(c)
$$(x-5)^2 + (y-2)^2 = 1600$$

or $x^2 + y^2 - 10x - 4y - 1571 = 0$

Source: 2017 P2 Q3 Higher Maths

(8) The line y = 3x intersects the circle with equation $(x-2)^2 + (y-1)^2 = 25$.

Find the coordinates of the points of intersection.

Answers: (2,6) & (-1,-3)

Source: 2016 P1 Q4 Higher Maths

(9) A and B are the points (-7, 3) and (1, 5).

AB is a diameter of a circle.

Find the equation of this circle.

Answer: $(x+3)^2 + (y-4)^2 = 17$

Source: 2017 P2 Q10 Higher Maths

(10)

(a) Show that the points A(-7, -2), B(2, 1) and C(17, 6) are collinear.

Three circles with centres A, B and C are drawn inside a circle with centre D as shown.

The circles with centres A, B and C have radii $r_{\rm A}$, $r_{\rm B}$ and $r_{\rm C}$ respectively.

- $r_{A} = \sqrt{10}$
- $r_{\rm B} = 2r_{\rm A}$
- $r_{\rm C} = r_{\rm A} + r_{\rm B}$
- (b) Determine the equation of the circle with centre D.

- Answers: (a) Proof (b) $(x-8)^2 + (y-3)^2 = 360$

Source: 2016 P1 Q8 Higher Maths

(11)

Show that the line with equation y = 3x - 5 is a tangent to the circle with equation $x^2 + y^2 + 2x - 4y - 5 = 0$ and find the coordinates of the point of contact.

Answers: Substitute for y and one solution means tangency. Point of contact (2,1)

Source: 2016 P2 Q4 Higher Maths

(12)

Circles C₁ and C₂ have equations $(x+5)^2 + (y-6)^2 = 9$ and $x^2 + y^2 - 6x - 16 = 0$ respectively.

- (a) Write down the centres and radii of C_1 and C_2 .
- (b) Show that C_1 and C_2 do not intersect.

Answer: (a) C1(-5,6) r = 3 C2(3,0) r = 5

(b)

- calculate the distance between 10 the centres
- 6 calculate the sum of the radii
- interpret significance of calculations

•² 8

 $ullet^3$ 8 < 10 ... the circles do not