# Differentiation

## **Higher Maths Exam Questions**

Source: 2019 P1 Q1 Higher Maths

(1)

Find the x-coordinates of the stationary points on the curve with equation  $y = \frac{1}{2}x^4 - 2x^3 + 6.$ 

Answers: x = 0 and 3

Source: 2019 P2 Q7b Higher Maths

(2)

- (a) Express  $-6x^2 + 24x 25$  in the form  $p(x+q)^2 + r$ .
- (b) Given that  $f(x) = -2x^3 + 12x^2 25x + 9$ , show that f(x) is strictly decreasing for all  $x \in \mathbb{R}$ .

Answers: 
$$(a) - 6(x-2)^2 - 1$$

•4 differentiate

(b)

- Method 1
- •5 link with (a) and identify sign of  $(x-2)^{2}$
- •6 communicate reason

- $-6x^2 + 24x 25$
- •5  $f'(x) = -6(x-2)^2 1$  and  $(x-2)^2 \ge 0 \ \forall x$
- •6 eg :  $-6(x-2)^2 1 < 0 \ \forall x$ ⇒ always strictly decreasing

Method 2

- 4 differentiate
- identify maximum value of f'(x)
- communicate reason

- $-6x^2 + 24x 25$
- $\bullet$ <sup>5</sup> 'maximum value is -1' or annotated sketch including x-axis
- •6 -1<0 or 'graph lies below x-axis'  $\therefore f'(x) < 0 \ \forall x$ 
  - ⇒ always strictly decreasing

#### Source: 2018 P2 Q3 Higher Maths

(3) A function, f, is defined on the set of real numbers by  $f(x) = x^3 - 7x - 6$ . Determine whether f is increasing or decreasing when x = 2.

Answer:

•¹ differentiate

- $\bullet^1 3x^2 7$
- evaluate derivative at x = 2
- •<sup>2</sup> 5

• interpret result

•  $^3$  (f is) increasing

### Source: 2018 P2 Q9 Higher Maths

(4) A sector with a particular fixed area has radius x cm.

The perimeter,  $P \, \mathrm{cm}$ , of the sector is given by

$$P = 2x + \frac{128}{x}$$
.

Find the minimum value of P.

Answer:  $Minimum\ value\ of\ P=32$ 

### Source: 2017 P1 Q8 Higher Maths

(5) Calculate the rate of change of  $d(t) = \frac{1}{2t}$ ,  $t \neq 0$ , when t = 5.

Answer:  $x = -\frac{1}{50}$ 

#### Source: 2017 P2 Q4 Higher Maths

- (6)
- (a) Express  $3x^2 + 24x + 50$  in the form  $a(x+b)^2 + c$ .
- (b) Given that  $f(x) = x^3 + 12x^2 + 50x 11$ , find f'(x).
- (c) Hence, or otherwise, explain why the curve with equation y = f(x) is strictly increasing for all values of x.

Answers: 
$$(a) 3(x+4)^2 + 2$$

(b) 
$$3x^2 + 24x + 50$$

(c)

#### Method 1

- •6 link with (a) and identify sign of  $(x+4)^{2}$
- 7 communicate reason

#### Method 2

- identify minimum value of f'(x)
- 7 communicate reason

#### Method 1

- $f'(x) = 3(x+4)^2 + 2$  and  $(x+4)^2 \ge 0 \ \forall x$
- •7  $\therefore 3(x+4)^2 + 2 > 0 \Rightarrow \text{always}$ strictly increasing

#### Method 2

- •6 eg minimum value =2 or annotated sketch
- •7  $2 > 0 : (f'(x) > 0) \Rightarrow \text{always}$ strictly increasing

#### Source: 2017 P2 Q7 Higher Maths

- (7)
- (a) Find the x-coordinate of the stationary point on the curve with equation  $y = 6x - 2\sqrt{x^3}$ .
- (b) Hence, determine the greatest and least values of y in the interval  $1 \le x \le 9$ .

(a) 
$$x = 4$$

Answers: (a) 
$$x = 4$$
 (b)  $Greatest = 8$ ,  $Least = 0$ 

#### Source: 2016 P1 Q2 Higher Maths

(8)

Given that  $y = 12x^3 + 8\sqrt{x}$ , where x > 0, find  $\frac{dy}{dx}$ .

Answer:

$$\frac{dy}{dx} = 36x^2 + 4x^{\frac{-1}{2}}$$

#### Source: 2016 P1 Q9 Higher Maths

- (9)
- (a) Find the *x*-coordinates of the stationary points on the graph with equation y = f(x), where  $f(x) = x^3 + 3x^2 24x$ .
- (b) Hence determine the range of values of  $\boldsymbol{x}$  for which the function  $\boldsymbol{f}$  is strictly increasing.

Answers: (a) x = -4, 2 (b) x < -4, x > 2

#### Source: 2015 P1 Q2 Higher Maths

(10) Find the equation of the tangent to the curve  $y = 2x^3 + 3$  at the point where x = -2.

Answer: y = 24x + 35

#### Source: 2015 P1 Q7 Higher Maths

(11) A function f is defined on a suitable domain by  $f(x) = \sqrt{x} \left( 3x - \frac{2}{x\sqrt{x}} \right)$ . Find f'(4).

Answer:  $9\frac{1}{8}$ 

### Source: Specimen P1 Q11 Higher Maths

(12)

The diagram shows the graph of y = f'(x). The x-axis is a tangent to this graph.



- (a) Explain why the function f(x) is never decreasing.
- (b) On a graph of y = f(x), the y-coordinate of the stationary point is negative. Sketch a possible graph for y = f(x).

Answers:

$$(a) m = f'(x) \ge 0$$

(b)



#### Source: Exemplar P1 Q1 Higher Maths

(13) The point P (5,12) lies on the curve with equation  $y = x^2 - 4x + 7$ . Find the equation of the tangent to this curve at P.

Answer: y - 12 = 6(x - 5)

#### Source: Exemplar P2 Q10 Higher Maths

- (14) Acceleration is defined as the rate of change of velocity.

  An object is travelling in a straight line. The velocity,  $v \, \text{m/s}$ , of this object,  $t \, \text{seconds}$  after the start of the motion, is given by  $v(t) = 8 \cos(2t \frac{\pi}{2})$ .
  - (a) Find a formula for a(t), the acceleration of this object, t seconds after the start of the motion.
  - (b) Determine whether the velocity of the object is increasing or decreasing when t=10.
  - (c) Velocity is defined as the rate of change of displacement. Determine a formula for s(t), the displacement of the object, given that s(t)=4 when t=0.

Answers:

- (a)  $a(t) = -16\sin(2t \frac{\pi}{2})$
- (b) a(10) > 0 therefore increasing
- (c)  $s(t) = 4sin\left(2t \frac{\pi}{2}\right) + 8$

### Source: 2014 P2 Q2 Higher Maths

(15) A curve has equation  $y = x^4 - 2x^3 + 5$ .

Find the equation of the tangent to this curve at the point where x = 2.

Answer: y - 5 = 8(x - 2)