

# Functions & Graphs

# **Higher Maths Exam Questions**

Source: 2019 P1 Q10 Higher Maths

(1)

The diagram shows the graphs with equations y = f(x) and y = kf(x) + a.



- (a) State the value of a.
- (b) Find the value of k.

Answers: (a) a = 3 (b) k = -2

Source: 2019 P1 Q12 Higher Maths

(2)

Functions f and g are defined by

- $f(x) = \frac{1}{\sqrt{x}}$ , where x > 0
- g(x) = 5 x, where  $x \in \mathbb{R}$ .
- (a) Determine an expression for f(g(x)).
- (b) State the range of values of x for which f(g(x)) is undefined.

Answers:

(3)

$$(a) \frac{1}{\sqrt{5-x}} \qquad (b) \ \ x \ge 5$$

$$(b) x \ge 5$$

Source: 2019 P2 Q5 Higher Maths

The diagram below shows the graph of a cubic function y = g(x), with stationary points at x = -2 and x = 4.



On the diagram in your answer booklet, sketch the graph of y = g'(x).

Answer:



# Source: 2019 P2 Q12 Higher Maths

(4)

Two variables, x and y, are connected by the equation  $y = ab^x$ .

The graph of  $log_4 y$  against x is a straight line as shown.



Find the values of a and b.

Answers:  $a = \frac{1}{4}$  b = 64

Source: 2018 P1 Q2 Higher Maths

(5) A fund

A function g(x) is defined on  $\mathbb{R}$ , the set of real numbers, by

$$g(x) = \frac{1}{5}x - 4$$
.

Find the inverse function,  $g^{-1}(x)$ .

Answer:  $g^{-1}(x) = 5(x+4)$ 

# Source: 2018 P1 Q15 Higher Maths

(6)

A cubic function, f, is defined on the set of real numbers.

- (x+4) is a factor of f(x)
- x = 2 is a repeated root of f(x)
- f'(-2) = 0
- f'(x) > 0 where the graph with equation y = f(x) crosses the y-axis

Sketch a possible graph of y = f(x) on the diagram in your answer booklet.

Answer:

- •1 root at x = -4 identifiable from graph
- •² stationary point touching x-axis when x = 2 identifiable from graph
- $^3$  stationary point when x = -2 identifiable from graph
- •<sup>4</sup> identify orientation of the cubic curve and f'(0) > 0 identifiable from graph

•1

•2

•3



#### Source: 2018 P2 Q6 Higher Maths

(7)

Functions, f and g, are given by  $f(x) = 3 + \cos x$  and g(x) = 2x,  $x \in \mathbb{R}$ .

- (a) Find expressions for
  - (i) f(g(x)) and
  - (ii) g(f(x)).
- (b) Determine the value(s) of x for which f(g(x)) = g(f(x)) where  $0 \le x < 2\pi$ .

Answers: (a) (i) 3 + cos2x (ii) 2(3 + cosx) (b)  $x = \pi$ 

#### Source: 2017 P1 Q1 Higher Maths

- (8) Functions f and g are defined on suitable domains by f(x) = 5x and  $g(x) = 2\cos x$ .
  - (a) Evaluate f(g(0)).
  - (b) Find an expression for g(f(x)).

Answers: (a) 10 (b) 2cos5x

# Source: 2017 P1 Q6 Higher Maths

(9) A function, h, is defined by  $h(x) = x^3 + 7$ , where  $x \in \mathbb{R}$ . Determine an expression for  $h^{-1}(x)$ .

Answer:  $h^{-1}(x) = \sqrt[3]{x-7}$  or  $(x-7)^{\frac{1}{3}}$ 

# Source: 2016 P1 Q6 Higher Maths

(10) Functions f and g are defined on  $\mathbb{R}$ , the set of real numbers.

The inverse functions  $f^{-1}$  and  $g^{-1}$  both exist.

- (a) Given f(x) = 3x + 5, find  $f^{-1}(x)$ .
- (b) If g(2) = 7, write down the value of  $g^{-1}(7)$ .

Answers: (a)  $g^{-1}(x) = \frac{x-5}{3}$  (b)  $g^{-1}(7) = 2$ 

#### Source: 2017 P1 Q15a Higher Maths

(11) A quadratic function, f, is defined on  $\mathbb{R}$ , the set of real numbers.

Diagram 1 shows part of the graph with equation y = f(x).

The turning point is (2,3).

Diagram 2 shows part of the graph with equation y = h(x).

The turning point is (7, 6).



Diagram 1



Diagram 2

(a) Given that h(x) = f(x+a)+b.

Write down the values of a and b.

(b) It is known that  $\int_{1}^{3} f(x) dx = 4$ .

Determine the value of  $\int_6^8 h(x) dx$ .

(c) Given f'(1) = 6, state the value of h'(8).

Answers: (a) a = -5 b = 3 (b) 10 (c) -6

#### Source: 2016 P1 Q10 Higher Maths

(12)

The diagram below shows the graph of the function  $f(x) = \log_4 x$ , where x > 0.



The inverse function,  $f^{-1}$ , exists.

On the diagram in your answer booklet, sketch the graph of the inverse function.

Answer:



#### Source: 2016 P1 Q12 Higher Maths

(13)

The functions f and g are defined on  $\mathbb{R}$ , the set of real numbers by  $f(x) = 2x^2 - 4x + 5$  and g(x) = 3 - x.

- (a) Given h(x) = f(g(x)), show that  $h(x) = 2x^2 8x + 11$ .
- (b) Express h(x) in the form  $p(x+q)^2 + r$ .

Answers: (a)  $Proof(b) \ 2(x-2)^2 + 3$ 

# Source: 2015 P1 Q4 Higher Maths

(14) The diagram shows part of the graph of the function  $y = p \cos qx + r$ 



Write down the values of p, q and r.

Answers: p = 3, q = 4, r = 1

#### Source: 2015 P1 Q5 Higher Maths

- (15) A function g is defined on  $\mathbb{R}$ , the set of real numbers, by g(x) = 6 2x.
  - (a) Determine an expression for  $g^{-1}(x)$ .
  - (b) Write down an expression for  $g(g^{-1}(x))$ .

Answers: (a) 
$$g^{-1}(x) = \frac{6-x}{2} = 3 - \frac{x}{2} = \frac{x-6}{-2}$$

#### Source: 2015 P2 Q2 Higher Maths

(16)

Functions f and g are defined on suitable domains by f(x) = 10 + x and g(x) = (1 + x)(3 - x) + 2.

- (a) Find an expression for f(g(x)).
- (b) Express f(g(x)) in the form  $p(x+q)^2 + r$ .
- (c) Another function h is given by  $h(x) = \frac{1}{f(g(x))}$ .

What values of x cannot be in the domain of h?

Answers: (a)10 + (1+x)(3-x) + 2  $(b) - x^2 + 2x + 15$  (c) 5 & -3

# Source: Specimen P1 Q8 Higher Maths

(17)

f(x) and g(x) are functions, defined on the set of real numbers, such that

$$f(x) = 1 - \frac{1}{2}x$$
 and  $g(x) = 8x^2 - 3$ .

- (a) Given that h(x) = g(f(x)), show that  $h(x) = 2x^2 8x + 5$ .
- (b) Express h(x) in the form  $a(x+p)^2+q$ .
- (c) Hence, or otherwise, state the coordinates of the turning point on the graph of y = h(x).
- (d) Sketch the graph of y = h(x) + 3, showing clearly the coordinates of the turning point and the y-axis intercept.

- Answers: (a) *Proof* (b)  $2(x-2)^2 3$  (c) (2,-3)

(d)



# Source: Exemplar P1 Q8 Higher Maths

(18)

The diagram below shows the graph of a quartic y=h(x), with stationary points at x=0 and x=2.



On separate diagrams sketch the graphs of:

- (a) y = 2 h(x).
- (b) y = h'(x).

#### Answers:

(a)



(b)

