

Straight Lines

Higher Maths Exam Questions

Source: 2019 P1 Q5 Higher Maths

(1)

- (a) Show that the points A(1,5,-3), B(4,-1,0) and C(8,-9,4) are collinear.
- (b) State the ratio in which B divides AC.

Answers:

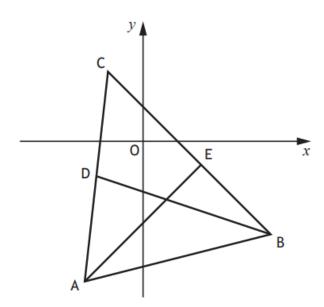
(a)
$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} \overrightarrow{BC} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix} \overrightarrow{AB} = \frac{3}{4} \overrightarrow{BC}$$
.

AB is parallel to BC (common diection) and B is a common point.

Therefore A, B and C are collinear.

(b) Ratio 3:4

Source: 2019 P1 Q7 Higher Maths


(2) The line, L, makes an angle of 30° with the positive direction of the x-axis. Find the equation of the line perpendicular to L, passing through (0,-4).

Answer: $y = -\sqrt{3}x - 4$

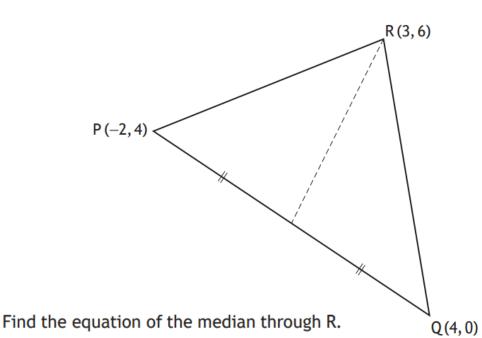
Source: 2019 P2 Q1 Higher Maths

(3)

Triangle ABC has vertices A(-5,-12), B(11,-8) and C(-3,6).

- (a) Find the equation of the median BD.
- (b) Find the equation of the altitude AE.
- (c) Find the coordinates of the point of intersection of BD and AE.

Answers: (*a*) 3y = -x - 13


(b) y = x - 7

(c) (2,-5)

Source: 2018 P1 Q1 Higher Maths

(4)

PQR is a triangle with vertices P(-2, 4), Q(4, 0) and R(3, 6).

Answer: y = 2x

Source: 2018 P1 Q8 Higher Maths

(5) A line has equation $y - \sqrt{3}x + 5 = 0$.

Determine the angle this line makes with the positive direction of the x-axis.

Answer: 60° or $\frac{\pi}{3}$

Source: 2017 P1 Q7 Higher Maths

(6) A(-3,5), B(7,9) and C(2,11) are the vertices of a triangle.

Find the equation of the median through C.

Answer: x = 2

Source: 2017 P1 Q11 Higher Maths

(7) A and B are the points (-7, 2) and (5, a).

AB is parallel to the line with equation 3y - 2x = 4.

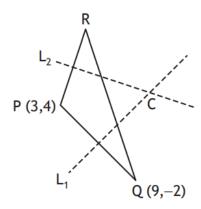
Determine the value of a.

Answer: a = 10

Source: 2015 P1 Q9 Higher Maths

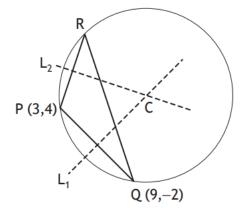
(8) A, B and C are points such that AB is parallel to the line with equation $y + \sqrt{3}x = 0$ and BC makes an angle of 150° with the positive direction of the x-axis.

Are the points A, B and C collinear?


Answer: $m_{ab}=-\sqrt{3}$ and $m_{bc}=-\frac{1}{\sqrt{3}}$ thereore points are not collinear

Source: 2018 P2 Q5a,b Higher Maths

PQR is a triangle with P(3,4) and Q(9,-2).

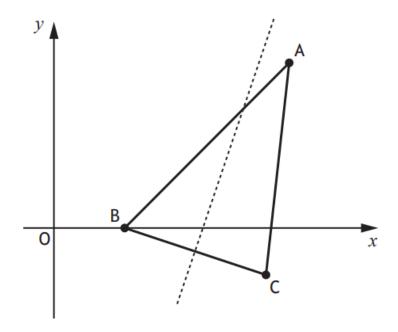

P (3,4)

(a) Find the equation of L_1 , the perpendicular bisector of PQ. The equation of L_2 , the perpendicular bisector of PR is 3y + x = 25.

(b) Calculate the coordinates of C, the point of intersection of L₁ and L₂.

C is the centre of the circle which passes through the vertices of triangle PQR.

(c) Determine the equation of this circle.


Answers: (a) y = x - 5 (b) C(10,5) (c) $(x - 10)^2 + (y - 5)^2 = 50$

Source: 2017 P2 Q1 Higher Maths

(10)Triangle ABC is shown in the diagram below.

The coordinates of B are (3,0) and the coordinates of C are (9,-2).

The broken line is the perpendicular bisector of BC.

- (a) Find the equation of the perpendicular bisector of BC.
- (b) The line AB makes an angle of 45° with the positive direction of the x-axis. Find the equation of AB.
- (c) Find the coordinates of the point of intersection of AB and the perpendicular bisector of BC.

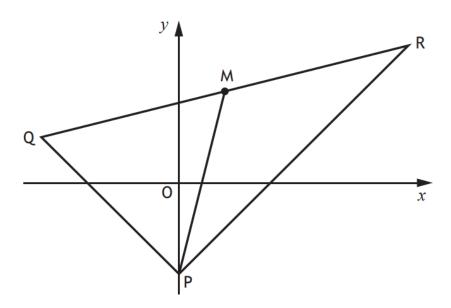
Answers:

(a)
$$y = 3x - 19$$
 (b) $y = x - 3$ (c) (8,5)

$$(b) y = x - 3$$

$$(c)$$
 (8,5)

Source: 2016 P1 Q1 Higher Maths


Find the equation of the line passing through the point (-2, 3) which is parallel to (11)the line with equation y + 4x = 7.

Answer: y + 4x = -5

Source: 2016 P2 Q1 Higher Maths

(12)

PQR is a triangle with vertices P(0,-4), Q(-6,2) and R(10,6).

- (a) (i) State the coordinates of M, the midpoint of QR.
 - (ii) Hence find the equation of PM, the median through P.
- (b) Find the equation of the line, L, passing through M and perpendicular to PR.
- (c) Show that line L passes through the midpoint of PR.

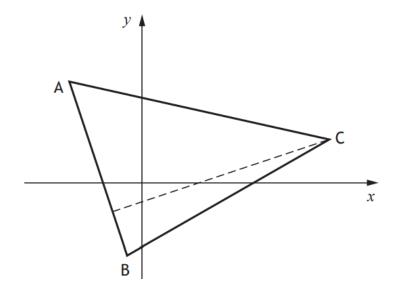
Answers (a) (i) M(2, 4) (ii) y = 4x - 4

$$(b) y = -x + 6$$

(c)

- •¹ find the midpoint of PR
- substitute x-coordinate into equation of L.
- verify y-coordinate and communicate conclusion

- •¹ (5,1)
- $y = -5 + 6 \quad (1 = -x + 6)$
- y = 1(x = 5) : L passes through the midpoint of PR


Other methods valid – see marking scheme

Source: 2015 P2 Q1 Higher Maths

(13)

The vertices of triangle ABC are A(-5, 7), B(-1, -5) and C(13, 3) as shown in the diagram.

The broken line represents the altitude from C.

- (a) Show that the equation of the altitude from C is x 3y = 4.
- (b) Find the equation of the median from B.
- (c) Find the coordinates of the point of intersection of the altitude from C and the median from B.

Answers: (a) *Proof* (b) y = 2x - 3 (c) (1, -1)

Source: Specimen P1 Q2 Higher Maths

(14)

Find the coordinates of the points of intersection of the curve $y = x^3 - 2x^2 + x + 4$ and the line y = 4x + 4.

Answers: (-1,0) (0,4) (3,16)

Source: Specimen P1 Q5 Higher Maths

(15) Line l_1 has equation $\sqrt{3}y - x = 0$.

- (a) Line l_2 is perpendicular to l_1 . Find the gradient of l_2 .
- (b) Calculate the angle $l_{\mathbf{2}}$ makes with the positive direction of the x-axis.

Answers:

(a) $m = -\sqrt{3}$ (b) $Angle = \frac{2\pi}{3}$ or 120°

Source: Specimen P1 Q9 Higher Maths

(16)

(a) AB is a line parallel to the line with equation y + 3x = 25.

A has coordinates (-1, 10).

Find the equation of AB.

(b) 3y = x + 11 is the perpendicular bisector of AB.

Determine the coordinates of B.

Answers: (a) y - 10 = -3(x + 1) (b) B(3, -2)

Source: Exemplar P1 Q6 Higher Maths

(17)

- (a) Find the equation of l_1 , the perpendicular bisector of the line joining P (3,-3)and Q (-1,9).
- (b) Find the equation of l_2 which is parallel to PQ and passes through R (1,-2).
- (c) Find the point of intersection of l_1 and l_2 .
- (d) Hence find the shortest distance between PQ and l_2 .

Answers: (a) $y - 3 = \frac{1}{3}(x - 1)$ (b) y + 2 = -3(x - 1)

(b)
$$y + 2 = -3(x - 1)$$

(c)
$$x = -\frac{1}{2}$$
, $y = \frac{5}{2}$ (c) $\sqrt{\frac{5}{2}} = \frac{\sqrt{10}}{2} = \sqrt{2.5}$