ADDITION STRATEGIES

To demonstrate a depth of understanding of addition, children should be able to progress through and use a variety of strategies to solve problems and show working. Not be over reliant on one method.

Combining 2 collections
Once children can count one group of objects they can begin to combine two sets.

Adding 10/100 to $2 / 3$

 digit numbersUsing sticks or straws bundled in groups of $10 \mathrm{~s} / 1 \mathrm{~s}$ and add 10/20/30 etc. Progress to 100s/10s and 1s. $432+$ 10/20/30 etc

Counting on -screened collections
Roll 2 dice. Allow children to see both sets of numbers, then cover the larger number up.

Children can progress to using larger numbers within their counting range. However when using this 'counting on' strategy, the second number should be no larger than 6. E.g $32+5 \ldots 32 \ldots 33,34,35,36,37$

Partition numbers in different ways

For children to partition they need to have a good understanding of place value 37 is $30+7$ or 3 tens +7 ones
463 is $400+60+3$ or 4 Hundreds +6 tens +3 ones

Formal algorithm

This should be the last strategy children learn for addition/ subtraction. Even when they fully understand how and why to use it, children should continue to be given lots of opportunities to use some of the other methods mentioned in this leaflet. The algorithm requires less mental agility than other strategies and children can become over reliant on this method.

Decimals

Regroup to make 5/10

This is an essential skill Using ten frames, start with the larger number and place that number of objects on the first ten frame. Now fill up that ten frame with the objects from the second set and then put the remaining objects on the next ten frame.

Bar Model

Bar models are a good method to help children solve word problems. They help children visualise what is happening.

If you ceant 77 lesese on a path and onother
24 lewos foll to the ground, how many howes
would there te?

Part-Part whole
Being able to see sets in

I can split 53 into 50
and 3

can be split into $20+16$

Empty Number Line

This method can be used to solve addition and subtraction calculations. it is also an excellent strategy for solving problems involving time and money.

To demonstrate a depth of understanding of subtraction children should be able to progress through and use a
Renfrewshire variety of strategies to solve problems and show working, not be over reliant on one.

Word sequences

Counting backwards in $1 \mathrm{~s} / 10 \mathrm{~s} / 100 \mathrm{~s}$ from different starting points e.g., 23, 22, 21,20 or 51, 41, 31, 21. Depending on the stage of the child.

Taking away using real objects

5 teddies in a shop. One gets sold. How many are left?

Subtracting 10/100 to 2/3 digit numbers

44-10 =34
Cover the straws as you remove 10 and see if the child can visualise how many are left. Repeat for subtracting 20 etc.

Comparing numbers

It is crucial for children to explore subtraction by comparing sets and finding the difference between numbers.

Part-Part whole

Being able to see that a whole number is made up of different parts. Children begin to understand that subtraction is the inverse of addition. Dominoes are an excellent resource for this.

Bar Model

Bar models are a good method to help children solve word problems.

Exchanging with concrete materials

32-17. I can subtract a ten first. That leaves 22. Now I will need to exchange one of the ten blocks for 10 ones so that I can subtract the remaining 7 .
addition and subtraction calculations and it is also an excellent strategy for solving problems involving time and money.
Counting back to subtract using screens
Children can count back within their number range. When using this count back in ones strategy, the second number should be no more than 6

"9 teddies came for a picnic. 3 of them hid in a box. Count back to find
9....8, 7, 6

Empty Number Line

This method can be used to solve
$74 \cdot 35$

tion can mean 'The difference between' then this is can be an efficient method for solving subtraction problems.

$$
\text { Add up to subtract. } 83-7
$$

$$
\underbrace{+1}_{74} \underbrace{1+5}_{80}
$$

1+5+3=9 The difference

$$
\text { etween } 74 \text { and } 83 \text { is } 9 .
$$

Count up to subtract

When children understand that subtrac-

Formal algorithm

This should be last strategy children learn for subtrac- ${ }^{2} 352$ tion with whole numbers. Even when they fully understand how and why to use it, children should continue to be given lots of opportunities to use the other methods mentioned in this leaflet. The algorithm requires less mental agility than other strategies and children can become over reliant on this.

Decimals
All of the above methods for subtraction with whole numbers can be applied in
the same way for the same way for subtraction with decimals.

