Multiplication and Division with 2D Shapes

I can solve a 2D shapes problem using multiplication and division.
Can you work out how many vertices are inside each bag? Write the calculation to show how you worked out the answer.

2 squares		7 decagons
This bag contains 2 squares. \qquad There are \qquad vertices.	This bag contains 4 pentagons. There are \qquad vertices.	This bag contains 7 decagons. \qquad There are \qquad vertices.

Can you work out how many shapes are inside each bag? Write the calculation to show how you worked out the answer. One has been done for you.

15 vertices	21 vertices	12 vertices	80 vertices
This bag contains 3 pentagons.	How many triangles are in this bag? \qquad	How many rectangles are in this bag? \qquad	How many decagons are in this bag? \qquad
$15 \div 5=3$			

Charlie has a bag containing 24 vertices? What set of shapes could it contain?

Multiplication and Division with 2D Shapes Answers

I can solve a 2D shapes problem using multiplication and division.
Can you work out how many vertices are inside each bag? Write the calculation to show how you worked out the answer.

This bag contains 2 squares.	This bag contains 4 pentagons.
$\mathbf{2 \times 4 = 8}$	
There are $\mathbf{8}$ vertices.	This bag contains 7 decagons.

Can you work out how many shapes are inside each bag? Write the calculation to show how you worked out the answer. One has been done for you.

15 vertices	21 vertices	12 vertices	
This bag contains 3 pentagons.	How many triangles are in this bag? 7	How many rectangles are in this bag? 3	How many decagons are in this bag? 8
$15 \div 5=3$	$21 \div 3=7$	$12 \div 4=3$	$80 \div 10=8$

Charlie has a bag containing 24 vertices? What set of shapes could it contain?

Any set of 6 quadrilaterals, a set of 8 triangles

Multiplication and Division with 2D Shapes

I can solve a 2D shapes problem using multiplication and division.

Can you work out how many vertices are inside each bag? Write the calculation to show how you worked out the answer.

| This bag contains 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pentagons. |
| There are |
| This bag |
| vertices. |

Can you work out how many shapes are inside each bag? Write the calculation to show how you worked out the answer. One has been done for you.

30 vertices	48 vertices	40 vertices	40 vertices
How many hexagons are in this bag? 5	How many octagons	How many octagons	How many quadrilaterals are in this bag?
$30 \div 6=5$			

Can you find another bag of shapes that would contain 40 vertices?

Multiplication and Division with 2D Shapes Answers

I can solve a 2D shapes problem using multiplication and division.

Can you work out how many vertices are inside each bag? Write the calculation to show how you worked out the answer.

		7 octogons	12 decagons
This bag contains 3 pentagons. $3 \times 5=15$ There are 15 vertices.	This bag contains 3 kites. $3 \times 4=12$ There are 12 vertices.	This bag contains 7 octagons. $7 \times 8=56$ There are 56 vertices.	This bag contains 12 decagons. $12 \times 10=120$ There are 120 vertices.

Can you work out how many shapes are inside each bag? Write the calculation to show how you worked out the answer. One has been done for you.

	48 vertices	40 vertices	40 vertices		
30 vertices	How many hexagons				
are in this bag? 5					How many octagons
:---:					
are in this bag? 6		How many octagons			
:---:					
are in this bag? 5		How many			
:---:					
quadrilaterals are in					
this bag? 10					

Can you find another bag of shapes that would contain 40 vertices?
Accept any correct answer, such as 5 octagons or 4 decagons.

Multiplication and Division with 2D Shapes

I can solve a 2D shapes problem using multiplication and division.
Can you work out how many vertices are inside each bag? Write the calculation to show how you worked out the answer.

7 nonagons	3 octagons	7 trapeziums	11 decagons
This bag contains 7 nonagons. There are \qquad vertices.	This bag contains \qquad octagons. There are \qquad vertices.	This bag contains \qquad trapeziums. There are \qquad vertices	This bag contains \qquad decagons. There are \qquad vertices.

Can you work out how many shapes are inside each bag? Write the calculation to show how you worked out the answer. One has been done for you.

21 vertices	42 vertices	36 vertices	36 vertices
This bag contains	How many hexagons	How many triangles	How many nonagons
3 heptagons.	are in this bag?	are in this bag?	are in this bag?
$21 \div 3=7$			

Can you find another bag of shapes that would contain 36 vertices?

Multiplication and Division with 2D Shapes Answers

I can solve a 2D shapes problem using multiplication and division.
Can you work out how many vertices are inside each bag? Write the calculation to show how you worked out the answer.

 7 nonagons			11 decagons
This bag contains 7 nonagons. $7 \times 9=63$ There are 63 vertices.	This bag contains 3 octagons. $3 \times 8=24$ There are $\mathbf{2 4}$ vertices.	This bag contains 7 trapeziums. $7 \times 4=28$ There are $\mathbf{2 8}$ vertices	This bag contains 11 decagons. $11 \times 10=110$ There are 110 vertices.

Can you work out how many shapes are inside each bag? Write the calculation to show how you worked out the answer. One has been done for you.

21 vertices	42 vertices	36 vertices	36 vertices
This bag contains 3 heptagons.	How many hexagons are in this bag? 7	How many triangles are in this bag? 6	How many nonagons are in this bag? 4
$21 \div 3=7$	$42 \div 6=7$	$36 \div 3=12$	$36 \div 9=4$

Can you find another bag of shapes that would contain 36 vertices?
Accept any correct answer, such as $\mathbf{6}$ hexagons or 9 quadrilaterals.

