

If a function links every number in the domain to **only** one number in the range, the function is called a **one to one correspondence**.

When function f(x) is a one to one correspondence from A to B, the function which maps from B back to A is called the **inverse function**, written $f^{-1}(x)$.

For example, if f(x) = 2x, the inverse would be the function which "cancels out" multiplication by 2, i.e. $f^{-1}(x) = \frac{1}{2}x$

Finding the Formula of an Inverse Function

We can find the formula for the inverse of a function through a process very similar to changing the subject of a formula.

Example 1: For each function shown find a formula for the inverse function.

a)
$$f(x) = 2x + 5$$

b) $g(x) = \frac{1}{2}(x - 9)$
c) $p(x) = 3x^3 - 4$
d) $h(x) = \frac{3x + 17}{x - 4}$
If $f(g(x)) = x$, then $f(x)$ and $g(x)$ are inverse functions
 $f(x) = g^{-1}(x)$
AND

Example 2: f(x) = 2x + 5 and $g(x) = \frac{x-5}{2}$. Show that $g(x) = f^{-1}(x)$

so that

 $g(x) = f^{-1}(x)$

The dotted lines on each diagram are the line y = x. In each case, the graph of an inverse function can be obtained from the graph of the original function by **reflecting in the line** y = x**.**

Example 4: $g(x) = x^3 + 6$

a) Sketch the graph of y = g(x).

b) Show that
$$g^{-1}(x) = \sqrt[3]{x-6}$$

c) Hence sketch the graph of $y = \sqrt[3]{x-6}$

Exponential functions have the formula $f(x) = a^x$, $x \in \mathbf{R}$, where a is called the **base**. The graph of $y = 2^x$ is shown below.

Example 7: Write as logarithms:

a) $y = 3^{x}$

b) $q = 13^{r}$

y = a^x means " a multiplied by itself x times gives y" y = log_ax means " y is the number of times I multiply a by itself to get x"

Past Paper Example:

Functions f and g are defined on the set of real numbers. The inverse functions f^{-1} and g^{-1} both exist.

a) Given f(x) = 3x + 5, find $f^{-1}(x)$

b) If g(2) = 7, write down the value of $g^{-1}(7)$.

Exponential and Logarithmic Functions

Exponential functions are those with variable powers, e.g. $y = a^{x}$. Their graphs take two forms:

Example 11: Ulanda's population in 2016 was 100 million and it was growing at 6% per annum.

a) Find a formula Pn for the population in millions, n years later.

Example 12: 8000 gallons of oil are lost in an oil spill in Blue Sky Bay. At the beginning of each week a filter plant removes 67% of the oil present.

a) Find a formula G _n for the amount of oil left in the bay after n weeks.	b) After how many complete weeks will there be less than 10 gallons left?	

Example 15: Write in exponential form:

I Bryson. Amendments by E Maxwell, M Doran, E Traynor & C Cassells

You **MUST** memorise the laws of logarithms to solve log equations! As we can only take logs of **positive** numbers, we must remember to discard any answers which violate this rule!

Example 18: Solve:

a) $\log_4 (3x - 2) - \log_4 (x + 1) = \frac{1}{2} \left(x > \frac{2}{3} \right)$	b) log ₆ x + log ₆ (2x - 1) = 2	$\left(x > \frac{1}{2}\right)$

The Exponential Function and Natural Logarithms

The graph of the derived function of $y = a^x$ can be plotted and compared with the original function. The new graphs are also exponential functions. Below are the graphs of $y = 2^x$ and $y = 3^x$ (solid lines) and their derived functions (dotted).

The value of the base of this function is known as e, and is approximately 2.71828.

T	he function $y = e^{x}$ is	known as The Exponential	Function.
The function y =	log _e x is known as the	Natural Logarithm of x, a	nd is also written as In x
Example 19: Evaluate:		Example 20: Solve:	
a) e ³	b) log _e 120	a) ln x = 5	b) 5 ^{x-1} = 16

Example 21: Atmospheric pressure P_t at various heights above sea level can be determined by using the formula $P_t = P_0 e^{rt}$, where P_0 is the pressure at sea level, t is the height above sea level in thousands of feet, and r is a constant.

- a) At 20 000 feet, the air pressure is half that at sea level. Find *r* accurate to 3 significant figures.
- b) Find the height at which *P* is 10% of that at sea level.

Example 22: A radioactive element decays according to the law $A_t = A_0 e^{kt}$, where A_t is the number of radioactive nuclei present at time *t* years and A_0 is the initial amount of radioactive nuclei.

 a) After 150 years, 240g of this material had decayed to 200g. Find the value of k accurate to 3 s.f. 	b) The half-life of the element is the time taken half the mass to decay. Find the half-life of the material.

Using Logs to Analyse Data, Type 1: $y = kx^n \Leftrightarrow \log y = n \log x + \log k$

When the data obtained from an experiment results in an exponential graph of the form $y = kx^n$ as shown below, we can use the laws of logarithms to find the values of k and n.

To begin, take logs of both sides of the exponential equation.

0

0.903

b) Hence express y in terms of x.

 $\log_{10} x$

Using Logs to Analyse Data, Type 2: $y = kn^{\times} \Leftrightarrow \log y = \log n (x) + \log k$

A similar technique can be used when the graph is of the form $y = kn^{x}$ (i.e. x is the index, not the base as before).

Example 24: The data below are plotted and the graph shown is obtained.

b) Hence express y in terms of x.

Related Graphs of Exponentials and Logs

Example 25: The graph of $y = \log_4 x$ is shown. On the same diagram, sketch:

Past Paper Example 1:

a) Show that x = 1 is a root of $x^3 + 8x^2 + 11x - 20 = 0$, and hence factorise $x^3 + 8x^2 + 11x - 20$ fully

b) Solve $\log_2(x + 3) + \log_2(x^2 + 5x - 4) = 3$

Past Paper Example 2: Variables *x* and *y* are related by the equation $y = kx^n$.

The graph of $\log_2 y$ against $\log_2 x$ is a straight line through the points (0, 5) and (4, 7), as shown in the diagram.

Find the values of k and n.

Past Paper Example 3: The concentration of the pes	ticide <i>Xpesto</i> in soil is modelled by the equation:
P_0 is th	e initial concentration
$P_t = P_0 e^{-kt}$ where: P_t is the	e concentration at time t
t is the	time, in days, after the application of the pesticide.
a) Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.	b) Eighty days after the initial application, what is the percentage decrease in <i>Xpesto</i> ?
If the half-life of <i>Xpesto</i> is 25 days, find the value of <i>k</i> to 2 significant figures.	
Past Paper Example 4: Simplify the expression $3\log_e 2e - 2\log_e 3e$ giving your answer in the form $A + \log_e B - \log_e C$, where A, B and C are whole numbers.	Past Paper Example 5: Two variables x and y satisfy the equation $y = 3(4^x)$. A graph is drawn of $\log_{10} y$ against x. Show that its equation will be of the form $\log_{10} y = Px + Q$, and state the gradient and y-intercept of this line.

	Expressions & Functions Unit To	opic Checklist: Unit Assessment Topics in Bold	
	Торіс	Questions	Done?
	Logarithms	Exercise 15E, (all)	Y/N
als	Laws of logarithms	Exercise 15F, Q 1	Y/N
£ Jti	Log equations	Exercise 15G, Q 1, 2, 3	Y/N
Logs & oonenti	e ^x and Natural logarithms	Exercise 15D, Q 1 - 5	Y/N
Logs & Exponentials	Exponential growth/decay	Exercise 15H, Q 4 - 7	Y/N
EX	Data and straight line graphs	Exercise 15J, Q 2; Exercise 15K, Q 2	Y/N
	Related log & exponential graphs	Exercise 15K, Q 1 - 7	Y/N
	Radians	Exercise 4C, Q 1 - 3	Y/N
	Exact Values	Exercise 4E, Q 1, 3	Y/N
~	Trig Identities	Exercise 17, Q 2; Exercise 11J, Q 20	Y/N
Trigonometry	Compound and double angle formulae	Exercise 11D, Q 6 - 8; Exercise 11F, Q 1 - 4, 7, 9	Y/N
nc	$k \cos(x - \alpha)$	Exercise 16C, Q 1 - 5; Exercise 16D, Q 2	Y/N
igc	$k\cos(x+\alpha)$	Exercise 16E, Q 1	Y/N
Ĕ	$k \sin(x \pm \alpha)$	Exercise 16E, Q 2, 3; Exercise 16E, Q 4, 5	Y/N
	Wave Fn Maxima and minima	Exercise 16G, Q 1, 3, 4, 5, 7	Y/N
	Solving Wave Fn equations	Exercise 16H, Q 1 - 4	Y/N
	Transforming graphs	Exercise 3P, Q 1 - 9	Y/N
£	Naming/Sketching trig graphs	Exercise 4B, (all)	Y/N
suo	Completing the square	Exercise 8D, Q 4, 6; Exercise 5, Q 3, 4	Y/N
tic: tic	Graphs of derived functions	Exercise 6P, (all)	Y/N
ap	Set Notation	Exercise 2A, Q 2 & 3	Y/N
Sets, Functions & Graphs	Composite Functions	Exercise 2C, Q 5 - 10	Y/N
ts,	Inverse Functions	Exercise 2D, Q 2; Exercise 2I, Q 1	Y/N
Se	Graphs of inverse functions	Exercise 2F, Q 1 & 2	Y/N
	Exponential & log graphs	Exercise 3N, Q 3, 4; Exercise 3O, p 47, Q 2, 3	Y/N
	Resultant vectors	Exercise 13N (all)	Y/N
	Unit Vectors (inc. i, j, k)	Exercise 13F, Q 1, 2;	Y/N
ş	Collinearity	Exercise 13N, Q 15 - 18, 23	Y/N
Vectors	Section Formula	Exercise 13N, Q 20 - 24	Y/N
ec	Scalar Product	Exercise 130, Q 1; Exercise 13P, Q 1, 2	Y/N
>	Angle between vectors	Exercise 13Q, Q 1, 2; Exercise 13S, Q 4 - 7	Y/N
	Perpendicular Vectors	Exercise 13R, Q 1 - 8	Y/N
	Properties of Scalar Product	Exercise 13U, Q 1, 2, 4, 5	Y/N

				Past	Paper (Quest	ions by	Topic											
	Topic	2008 2009				2010 2011				20		2013		2014		2015		2016	
	Торіс	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2
	Ranges and Domains	4b						20				13		12			2c	15b	
s	Composite Functions	4a		3		3			2a,b		1a	1			3a	5b	2a	12a	
apt	Inverse Functions															5a		6	1
Functions and Graphs	Transforming graphs				7			3			4	11		11		13c			
ŭ P	Interpreting trig functions and graphs	10b				11b	4a			9		4				4			
ал	Exact Values									1				13					1
	Terms of Recurrence Relations			4		7a							1	1			3a	3a	
on	Creating & using RR formulae																		1
Recurrenc e Relation	Finding a limit of an RR	6				7b			3c		6	8		10			3b	3b, c	
e l	Solving RR's to find <i>a</i> and <i>b</i>								3a,b										
	Gradients from points or equations							2				2							
	Gradients from angles with x - axis	1						8		4					1c				
	Equations of straight lines				1	1		21a		23b		5	2a					1	1b
	Perpendicular bisectors		3					21c		23a					1a				
ine	Altitudes			1b													1a		
1	Medians			1a													1b		1a
Straight Line	Points of intersection of lines		3c	1c				21b		23c			2b,c		1b		1c		1c
tra	Distance Formula	2b								23d									
Š	Collinearity															9			
	Finding derivatives of functions									6,8						7			
	Equations of tangents to curves		6		3a,10b		5a	4		2				2	2	2		2	
	Increasing & decreasing functions													21a				9b	
Б	Stationary points			5		9b		22b		18				21b				9a	
ati	Curve Sketching					9c		22ac											
nti	Closed Intervals	8c								12	3								
Differentiation	Graphs of derived functions																		
iffe	Optimisation				12		6						7				8		7
	Velocity, Acceleration, Displacement														9				
	Finding indefinite integrals		1					11,16		11		7							
ы	Definite Integrals														5				
Integration	Area under a curve			6		8c				21b						12			3b
50	Area between two curves		5						4				4		7		4		
Inte	Differential Equations				5		10b									15			9

I Bryson. Amendments by E Maxwell, M Doran, E Traynor & C Cassells

Page 106 of 107

	-			P	ast Pa	per Qu	estions	by To	opic									-	
	+	2	008	20	09	20	010	20	011	20	12	201	201	14	20	015	2016		
	Торіс	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2
	Completing the square			8				5		3		21		17			2b	12b	
atio	Quadratic Inequations		11b					18		19		19				8			
que	Roots using $b^2 - 4ac$		11b		2			9			1b	3			3b				2
Quadratic s	Tangency using $b^2 - 4ac$				3b	4			2c, d			22c,d	3b			11b			
	Synthetic Division	8a,b	11a	9b, c		8b		7		21a		6	3a	22		3			3a
Polyno mials	Intersections of curves																		
oly	Functions from graphs						10a	17		13		17		15				15a	
άE	Approximate roots (Iteration)																		
	$(x - a)^2 + (y - b)^2 = r^2$	11a	3c						7		2b			23c				4	4a
	General equation of a circle	2a		2a	4	5			7			22a			8				4a
es	Lines cutting circles										2a			23ab		14	5		
Circles	Tangents to circles	11b	3b	2b			3, 5c	6				22b		2		11a		8	
Ö	Distance between centres vs radii																		4b
-	Trig Equations		8	7		6	4b	10	6b			15	8		6				
on 2	Compound angle formulae		2		8b		2a	12				10						13	8b
Trigono metry	Double angle formulae	9	8	7	8a,b	6	2b	23		5		9		7,18		P1 P2 P1 P2 2b 12b 12b 8 2 11b 2 11b 15a 3a 3a 11b 15a 4 4a 4 4a 4a 4a 11a 8 4b 4b 7b 11a 11a 11a 7b 11a 7 5a 11b 7 5a 11a 11a 11a 5 5b			
FΕ	Trigonometric identities																7b		11a
	Interpreting vector diagrams													19	4a				
	Unit Vectors				6					15								11b	
	Position Vectors and Components	3b				2		1	1a, b	10	5ai	12		6	4b			7	5a
	Collinearity							15				24							
	Section Formula	3a								7								11a	
	Scalar Product (angle form)																		
	Scalar Product (components)			9a						17									5b
Vectors	Angle between vectors		4	9d			1		1c		5aii,b				4c				5b
t,	Perpendicular Vectors													14		1			
×	Properties of Scalar Product		10					14				14		16			6		
WF	Wave Functions	10a			10a	11a			6a	22a		23		4,9			9		8a
	Chain Rule (inc. trig functions)	5				10		13		16		18		8					
Further Calculus	Integrating a () ⁿ						<u> </u>			14.22b		16		5	5				
f g	Integrating sin and cos			l	9.		+		<u> </u>	14,220		10		,	5				100
Ca	5 5	5			10b		7		6b				6				7a,c	5	
-	Exponential growth/decay		9		11								9						6
ent	Log equations		7				8			20			5	3,20		-		14	
Logs and Exponenti als	Exponential and log graphs	7					9	19			7							10	
பையாக	Linearisation			10			11		5			20		24					

I Bryson. Amendments by E Maxwell, M Doran, E Traynor & C Cassells

Page 107 of 107