Trigonometry: The Wave Function

It is possible to model the behaviour of waves in real-life situations (e.g. the interaction of sound waves or the tides where two bodies of water meet) using trigonometry. Consider the result of combining the waves represented by the functions $y = \sin x^{\circ}$ and $y = \cos x^{\circ}$. To find what the resultant graph would look like, complete the table of values (accurate to 1 d.p.) and plot on the axes below.

Looking at the graph of $y = \sin x^{\circ} + \cos x^{\circ}$ above, we can compare it to cosine graph shifted 45° to the right (i.e. $y = \cos(x - \alpha)^{\circ}$), and stretched vertically by a factor of roughly 1.4 (i.e. $y = k\cos x^{\circ}$).

It is important to note, however, that the graph could also be described as a cosine graph shifted to the *left*, and also as a sine graph! Therefore, $y = sinx \circ + cosx \circ could$ **also** be written as:

v = 1.4CUS(X + J) UR v = 1.4SIII(X - J) UR v = 1.4SIII(X + J) UR	$v = 1.4\cos(x + x)$	OR	v = 1.4sin(x -) OR	v = 1.4sin(x + 1)	1
--	----------------------	----	----------------	------	-------------------	---

Rather than drawing an approximate graph, it is more useful if we use an algebraic method.

NOTE: you will only be asked to use one specific form to describe a function, not all four!

Example 1: Write sinx \circ + cosx \circ in the form $k \cos(x - \alpha)^{\circ}$, where $0 \le \alpha \le 360$.

This technique can also include the difference between waves and to include double (or higher) angles, but only when the angles of both the sin and cos term are the same (i.e. $2\cos^2x + 5\sin^2x$ can be written as a wave function, but $2\cos^2x + 5\sin^3x$ could not).

Example 2: Write sinx $-\sqrt{3}\cos x$ in the form $k \cos(x - \alpha)$, where $0 \le \alpha \le 2\pi$

Example 3: Write $12\cos x^{\circ} - 5\sin x^{\circ}$ in the form $k \sin(x - \alpha)^{\circ}$, where $0 \le \alpha \le 360$

Example 4: Write $2\sin 2\theta - \cos 2\theta$ in the form $k \sin(2\theta + \alpha)$, where $0 \le \alpha \le 2\pi$

Solving Trig Equations Using the Wave Function

In **almost all** cases, questions like these will be split into two parts, with a) being a "write in the form $y = k \cos(x - \alpha)$ " followed by b) asking "hence or otherwise solve......".

Use the wave function from part a) to solve the equation!

Example 5:

a) Write $2\cos x^{\circ} - \sin x^{\circ}$ in the form $k \cos(x - \alpha)^{\circ}$ where $0 \le \alpha \le 360$

b) Hence solve $2\cos x \circ - \sin x \circ = -1$ where $0 \le x \le 360$

Maximum and Minimum Values and Sketching Wave Function Graphs

Look back at the graph you drew of sinx $^{\circ}$ + cosx $^{\circ}$. The maximum value of the graph is $\sqrt{2}$ at the point where $x = 45^{\circ}$, and the minimum value is $-\sqrt{2}$ at the point where $x = 225^{\circ}$. Compare these to the maximum and minimum of $y = \cos x^{\circ}$, i.e. a maximum of 1 where $x = 0^{\circ}$ or 360° and a minimum of -1 where $x = 180^{\circ}$.

Since sinx ° + cosx ° = $\sqrt{2} \cos(x - 45)^\circ$, we can see that the maximum and minimum values change from ± 1 to $\pm k$.

The maximum value occurs where $\sqrt{2} \cos(x - 45)^\circ = \sqrt{2}$, i.e. $\cos(x - 45)^\circ = 1$. Similarly, the minimum value occurs where $\sqrt{2} \cos(x - 45)^\circ = -\sqrt{2}$, i.e. $\cos(x - 45)^\circ = -1$

For $a \sin x + b \cos x = k \cos(x - \alpha)$, k > 0:

Maximum = k when $cos(x - \alpha) = 1$ Minimum = -k when $cos(x - \alpha) = -1$

Example 6:

a) Write $\sqrt{3}$ sinx + cosx in the form $k \cos(x - \alpha)^{\circ}$, where $0 \le \alpha \le 360^{\circ}$

Recognising Trig Equations

The trig equations we can be asked to solve at Higher level can be split into three types based on the **angle** (i.e. x° , $2x^{\circ}$, $3x^{\circ}$ etc) and the **function(s)** (i.e. sin, cos, tan, sin & cos).

Type One: One Function One Angle	e.g.: $2 \sin 4x + 1 = 0$ $\tan^2 x = 3$ $3\sin^2 x - 4\sin x + 1 = 0$	 Factorise (if necessary) Rearrange to sin() = () [or cos, or tan] Inverse sin/cos/tan to solve
Type Two: Two Functions One Angle	e.g.: $\sin x + \cos x = 1$ $3\cos(2x) + 4\sin(2x) = 0$ $\cos(4\theta) - \sqrt{3}\sin(4\theta) = -1$	 Rewrite as a WAVE FUNCTION (choose kcos(x - α) unless told differently) Solve as Type One
Type Three: Two Angles	e.g.: $5\cos(2\theta) = \cos\theta - 2$ $2\sin(2x) + \sin(x) = -0.5$ $2\cos 2x - \sin x + 5 = 0$	 Rewrite the double angle and factorise (change cos2x to the SINGLE ANGLE function) Solve as Type One

Past Paper Example:

a) The expression $\sqrt{3} \sin x^\circ - \cos x^\circ$ can be written in the form $k \sin(x - \alpha)^\circ$, where k > 0 and $0 \le \alpha < 360$. Calculate the values of k and α .

b) Determine the maximum value of 4 + 5 cosx° - 5 $\sqrt{3}$ sinx°, where 0 $\leq \alpha < 360$, and state the value of x for which it occurs.