Calculus 3: Further Calculus

Let f(x) = sinx and g(x) = cosx. The graphs of v = f(x) and y = g(x) are shown below, where the x-axis is
measured in radians. Tangents to each curve have been drawn at the following points:

On y = sinx, the tangent at x = 0 has m = 1, and the tangent at x = t has m = -1.

On y = cosx, the tangent at x = % has m = -1, and the tangent at x = 32” has m = 1.

Draw the graphs of v = f’(x) and y = g’(x) below.

-1 -1

The graphs of the derived functions therefore show that:

Ify=sinx,dy = Ify=cosx,dy =
dx X
Example 1: Find the derivative in each case:
a) y = 4sinx b) f(x ) = 2cosx c) g(x) = —%COSX d) h = -5sink

As integration is the opposite of differentiation, we can also say that:
_[cosxdx = jsinxdx =
Example 2: Find:
a) _[24cosxdx b)j-BSinsds c) I(3x - cosx)dx

e Definite Integrals of sin and cos functions MUST be done in radians!

!
IMPORTANT! e NEVER ignore any brackets where the limit is zero!

| Bryson. Amendments by E Maxwell, M Doran, E Traynor & C Cassells Page 68 of 107




Example 3: Evaluate:

a) j;% sinx dx

C) I:2cosx dx

b) J'O%(sinx-cosx)dx

The Chain Rule

Example 4: By first expanding the brackets, find the derivatives of the following functions:

a)y=(3x+1)? b) v = (2x2
9y L k1) X LAy
dx dx

_1)2

(2% -

c)y=(2x+1)

WYl axe1px

1) X
dx

In each case, we can factorise the answer to give us back the original function, which has been
differentiated as if it was just an x % or x 3 term (multiply by the old power, drop the power by one), and
then multiplied by the derivative of the function in the bracket.

This is known as the Chain Rule, and can
be written generally for brackets with
powers as:

For f(x ) = @ (coe)”, (X ) = @n (c.......)™" x (DOB)

where DOB = the Derivative Of the Bracket
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Example 5: Use the chain rule to differentiate:

1
a) f(x) = (4x - 2)* b) Q(X)ZW(X<—%,X>O) c) y =sin’x

The Chain Rule can also be applied to sine and cosine functions with double or compound angles, or to
more complicated composite functions containing sine and cosine.

For functions including sine and cosine For f(x ) = sin(.....), For f(x ) = cos(......),
components: f’(x) = cos(......) x DOB f’(x) = - sin(......) x DOB

Example 6: Differentiate:

a) y =sin(3x) b) f(X)ZCOS(%—ZX] c)y :sin(xz)

Example 7: Find the equation of the tangent to y — 5,-,-(2)( n ”j when x = %
3
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Further Integration

We have seen that integration is anti-differentiation, i.e. the opposite of differentiating.

As finding the derivative of a function with a bracket included multiplying by DOB, then integrating
must also include dividing by DOB.

n+1

(ax +b) N

To integrate: j(ax+b) dx = (h+1)~a

Important Point: Integration is more complicated than differentiation!

This method only works for linear functions inside the bracket, i.e. the highest power = 1. To find,
e.g., j(g3 —7)2 dg , we would have to multiply out the bracket and integrate each term separately.

Example 8: Evaluate:

a) I(x+3)3dx b) J-(4X-7)9dX C)IL (ti_%j

d) [ (2t+5) dt o J% (x>—%)
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I sin(ax +b)dx j cos(ax +b)dx
For functions including sine and cosine
ts:
components :—lcos(ax+b)+C zlsin(ax+b)+C
a a

Example 9: Evaluate:

a) jsin4xdx b) j3costdx c) jsin(1—2x)dx

(1
d) (i) Write cos? x in terms of cos 2x e) Evaluate ) sm[ix)dx

(ii) Hence find I4coszx dx
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Example 10: Find the area enclosed by y — sir{Zx _ Ej , the x - axis and the lines x =0 and x = %
4

T T
0 w2 ud 32 2

Differentiation Integration
f(x) £ (x ) f(x ) j f(x) dx
In summary, for trig ] _ 1
functions: sinax a cosax sinax 3 cosax
. 1 .
cosax -a sinax cosax 2 sinax
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Uses of Calculus in Real Life Situations

In the same way that geometry is the study of shape, calculus is the study of how functions change.
This means that wherever a system can be described mathematically using a function, calculus can be
used to find the ideal conditions (as we have seen using optimisation) or to use the rate of change at a

given time to find the total change (using integration).

As a result, calculus is used throughout the sciences: in Physics (Newton’s Laws of Motion, Einstein’s
Theory of Relativity), Chemistry (reaction rates, radioactive decay), Biology (modelling changes in
population), Medicine (using the decay of drugs in the bloodstream to determine dosages), Economics
(finding the maximum profit), Engineering (maximising the strength of a building whilst using the
minimum of material, working out the curved path of a rocket in space) and more.

Example 11: In Physics, the formulae for kinetic energy (Ex) and momentum (p) are respectively.
1

Ex= — mv? and p=mv
2
a) How could the formula for momentum be b) How could the formula for kinetic energy be
obtained from the formula for kinetic energy? obtained from the formula for momentum?

Displacement, Velocity and Acceleration

The most common use of this approach considers the link between displacement, velocity and

acceleration.
When an object moves on a journey, we (’ \\‘
normally think of the total distance travelled. LT T~ AV —-----
/ hN oM Distance
Displacement is the straight line distance /! \\ N - ’.B |
between the start and end points of a journey ~ ~__ \ SNl Displacement
(so the displacement is not necessarily the A ‘o et

same as the distance travelled!)
As displacement is a “straight-line” measurement, it involves direction and therefore is a vector
quantity: another name for displacement is the position.

Velocity is the vector equivalent of speed, i.e. if speed is a measure of the distance travelled in a
given time, then velocity is a measure of the change in displacement which occurs in a given time.

Velocity is defined as the rate of change of displacement with respect to time.

Acceleration measures the change in velocity of an object in a given time: if two race cars have the
same top speed, then the one which can get to that top speed first would win a race.

Acceleration is defined as the rate of change of velocity with respect to time.

If one of either displacement, velocity or acceleration can be described using a function, then the
other two can be obtained using either differentiation or integration, i.e.:

Differentiate Differentiate
/—\ /—\
| Displacement | Velocity | | Acceleration
\/ \/
Integrate Integrate
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Example 12: The displacement s cm at a time t seconds of a particle moving in a straight line is given
by the formula s = t* - 2t* + 3t.

a) Find its velocity v cm/s after 3 seconds. b) The time at which its acceleration a is equal to
26cm/s%.

V/a
Example 13: The velocity of an electron is given by the formula v(t) = 5 sin (Zt-zj.

a) Find the first time when its acceleration is at b) Find a formula for the displacement of the
its maximum. electron, given that s = 0 when t = 0.
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Past Paper Example 1: A curve has equation y =(2x — 9)% y
Part of the curve is shown in the diagram opposite.

a) Show that the tangent to the curve at the point where

<
1]
wW|=

x =9 has equation y = %x.

y

Qx—9ﬁ

b) Find the coordinates of A, and hence find the shaded area.

Past Paper Example 2: A curve for which Z—y = 3sin2x passes through the point (5_72”,\5]
1

X
Find y in terms of x .
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Past Paper Example 3: Find the values of x for which the function f(x) = 2x + 3 + 18 x4, s

increasing.

xX-4

Relationships & Calculus Unit To

pic Checklist: Unit Assessment Topics in Bold

Topic Questions Done?
" Synthetic Division Exercise 7C, Q 2, 4 Y/N
3 Factorising polynomials Exercise 7E, Q1 -7 Y/N
§ Solving polynomial equations Exercise 7G, Q 2, 4, 6 Y/N
_§. Finding coefficients Exercise 7F, Q 1, 2 Y/N
S Functions from graphs Exercise 7H, Q1 - 15 Y/N
. 2 Exercise 8H, Q 1, 2; Exercise 81, Q 1, 2, 5,6, 8 Y/N
Roots using b* —4ac Exercise 8K, Q 10, 12 Y/N
Solving Trig Equations (including Exercise 4H, Q 1, 2, 5; Exercise 4I, Q 1 - 3 Y/N
use of double angle formulae) Exercise 11H, Q 1, 2 Y/N
Exercise 6F, (all); Exercise 6G, (all) Y/N
5 Finding derivatives of functions Exercise 6H, Q2,4,5,7,9; Exercise 61, Q 1, 2, Y/N
s}
'ag Equations of tangents to curves Exercise 6J, Q 1, 2; Exercise 6S, Q 13 Y/N
o Increasing & decreasing functions Exercise 6L, Q1 -7 Y/N
g Stationary points Exercise 6M, (all); Exercise 6S, Q 14 Y/N
a Curve Sketching Exercise 6N, Q1 -3 Y/N
Closed Intervals Exercise 60, Q 2 Y/N
Finding indefinite integrals Exercise 9H, (all); Exercise 91, Q 1 (a - n) Y/N
Definite Integrals Exercise 9L, Q1 -3 Y/N
5 Djfferentiating and integrating Exercise 14C, Q 1, 2,5, 6 Y/N
S sinx and cosx
gn The Chain Rule Exercise 14H, Q 3, 4, 5; Exercise 14l, Q 1, 3, 4, Y/N
9 5
£ Integrating a (.....)" Exercise 14J, Q 1, 4, 5, 8 Y/N
Integrating sin(ax + b) and Exercise 14K, Q 1, 2,5, 6, 8 Y/N
cos(ax + b) Exercise 14L, Q 10, 12, 13 Y/N
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