Calculus 3: Further Calculus

Let $f(x)=\sin x$ and $g(x)=\cos x$. The graphs of $y=f(x)$ and $y=g(x)$ are shown below, where the x-axis is measured in radians. Tangents to each curve have been drawn at the following points:

On $y=\sin x$, the tangent at $x=0$ has $m=1$, and the tangent at $x=\pi$ has $m=-1$.
On $y=\cos x$, the tangent at $x=\frac{\pi}{2}$ has $m=-1$, and the tangent at $x=\frac{3 \pi}{2}$ has $m=1$.
Draw the graphs of $y=f^{\prime}(x)$ and $y=g^{\prime}(x)$ below.

The graphs of the derived functions therefore show that:
If $y=\sin x, \frac{d y}{d x}=$
If $y=\cos x, \frac{d y}{d x}=$

Example 1: Find the derivative in each case:
a) $y=4 \sin x$
b) $f(x)=2 \cos x$
c) $g(x)=-\frac{1}{2} \cos x$
d) $h=-5 \sin k$

As integration is the opposite of differentiation, we can also say that:
$\int \cos x d x=$
$\int \sin x d x=$
Example 2: Find:
a) $\int 24 \cos x d x$
b) $\int-3$ sins $d s$
c) $\int(3 x-\cos x) d x$

Example 3: Evaluate:

a) $\int_{0}^{\pi / 2} \sin x d x$
b) $\int_{0}^{\pi / 4}(\sin x-\cos x) d x$
c) $\int_{0}^{3} 2 \cos x d x$

The Chain Rule

Example 4: By first expanding the brackets, find the derivatives of the following functions:
a) $y=(3 x+1)^{2}$
b) $y=\left(2 x^{2}-1\right)^{2}$
c) $y=(2 x+1)^{3}$
$\therefore \frac{d y}{d x}=-(3 x+1) x$

In each case, we can factorise the answer to give us back the original function, which has been differentiated as if it was just an x^{2} or x^{3} term (multiply by the old power, drop the power by one), and then multiplied by the derivative of the function in the bracket.

This is known as the Chain Rule, and can be written generally for brackets with powers as:

For $f(x)=a(\ldots \ldots . . .)^{n}, f^{\prime}(x)=a n(\ldots)^{n-1} x(D O B)$
where $D O B=$ the Derivative Of the Bracket

Example 5: Use the chain rule to differentiate:
a) $f(x)=(4 x-2)^{4}$
b) $g(x)=\frac{1}{\sqrt{2 x^{2}+x}}\left(x<-\frac{1}{2}, x>0\right)$
c) $y=\sin ^{2} x$

The Chain Rule can also be applied to sine and cosine functions with double or compound angles, or to more complicated composite functions containing sine and cosine.

For functions including sine and cosine components:

$$
\begin{aligned}
& \text { For } f(x)=\sin (\ldots \ldots . .) \text {, } \\
& f^{\prime}(x)=\cos (\ldots . . .) \times \text { DOB }
\end{aligned}
$$

For $f(x)=\cos (. . . .$.$) ,$
$f^{\prime}(x)=-\sin (\ldots \ldots)$.$x DOB$

Example 6: Differentiate:
a) $y=\sin (3 x)$
b) $f(x)=\cos \left(\frac{\pi}{4}-2 x\right)$
c) $y=\sin \left(x^{2}\right)$

Example 7: Find the equation of the tangent to $y=\sin \left(2 x+\frac{\pi}{3}\right)$ when $x=\frac{\pi}{6}$.

Further Integration

We have seen that integration is anti-differentiation, i.e. the opposite of differentiating.
As finding the derivative of a function with a bracket included multiplying by DOB, then integrating must also include dividing by DOB.

To integrate:

$$
\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{(n+1) \times a}+C
$$

Important Point: Integration is more complicated than differentiation!

This method only works for linear functions inside the bracket, i.e. the highest power $=1$. To find, e.g., $\int\left(g^{3}-7\right)^{2} d g$, we would have to multiply out the bracket and integrate each term separately.

Example 8: Evaluate:
a) $\int(x+3)^{3} d x$
b) $\int(4 x-7)^{9} d x$
c) $\int \frac{d t}{(4 t+9)^{2}}\left(t \neq-\frac{9}{4}\right)$
d) $\int_{1}^{2}(2 t+5)^{3} d t$

e) $\int_{0}^{6} \frac{d x}{\sqrt{4 x+1}}\left(x>-\frac{1}{4}\right)$

For functions including sine and cosine components:

$$
\left.\begin{array}{rl}
& \int \sin (a x+b) d x \\
= & -\frac{1}{a} \cos (a x+b)+c
\end{array} \quad \begin{array}{r}
\\
\end{array} \quad=\frac{1}{a} \cos (a x+b) d x+a x+b\right)+c
$$

Example 9: Evaluate:
a) $\int \sin 4 x d x$
b) $\int 3 \cos 2 x d x$
c) $\int \sin (1-2 x) d x$
d) (i) Write $\cos ^{2} x$ in terms of $\cos 2 x$
e) Evaluate $\int_{0}^{2 \pi} \sin \left(\frac{1}{2} x\right) d x$
(ii) Hence find $\int 4 \cos ^{2} x d x$

Example 10: Find the area enclosed by $y=\sin \left(2 x-\frac{\pi}{4}\right)$, the $x-$ axis and the lines $x=0$ and $x=\frac{\pi}{2}$.

In summary, for trig functions:

Differentiation	
$\mathrm{f}(x)$	$\mathrm{f}^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Integration	
$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x$
$\cos a x$	$\frac{1}{\mathrm{a}} \operatorname{sinax}$

In the same way that geometry is the study of shape, calculus is the study of how functions change. This means that wherever a system can be described mathematically using a function, calculus can be used to find the ideal conditions (as we have seen using optimisation) or to use the rate of change at a given time to find the total change (using integration).
As a result, calculus is used throughout the sciences: in Physics (Newton's Laws of Motion, Einstein's
Theory of Relativity), Chemistry (reaction rates, radioactive decay), Biology (modelling changes in population), Medicine (using the decay of drugs in the bloodstream to determine dosages), Economics
(finding the maximum profit), Engineering (maximising the strength of a building whilst using the minimum of material, working out the curved path of a rocket in space) and more.

Example 11: In Physics, the formulae for kinetic energy $\left(E_{k}\right)$ and momentum (p) are respectively.

$$
E_{k}=\frac{1}{2} m v^{2} \quad \text { and } \quad p=m v
$$

a) How could the formula for momentum be obtained from the formula for kinetic energy?
b) How could the formula for kinetic energy be obtained from the formula for momentum?

Displacement, Velocity and Acceleration

The most common use of this approach considers the link between displacement, velocity and acceleration.

When an object moves on a journey, we normally think of the total distance travelled.

Displacement is the straight line distance between the start and end points of a journey
(so the displacement is not necessarily the

Distance
$\xrightarrow[\text { Displacement }]{ }$ same as the distance travelled!)
As displacement is a "straight-line" measurement, it involves direction and therefore is a vector quantity: another name for displacement is the position.

Velocity is the vector equivalent of speed, i.e. if speed is a measure of the distance travelled in a given time, then velocity is a measure of the change in displacement which occurs in a given time.

Velocity is defined as the rate of change of displacement with respect to time.
Acceleration measures the change in velocity of an object in a given time: if two race cars have the same top speed, then the one which can get to that top speed first would win a race.

Acceleration is defined as the rate of change of velocity with respect to time.
If one of either displacement, velocity or acceleration can be described using a function, then the other two can be obtained using either differentiation or integration, i.e.:

Example 12: The displacement $s \mathrm{~cm}$ at a time t seconds of a particle moving in a straight line is given by the formula $s=t^{3}-2 t^{2}+3 t$.
a) Find its velocity $v \mathrm{~cm} / \mathrm{s}$ after 3 seconds.
b) The time at which its acceleration a is equal to $26 \mathrm{~cm} / \mathrm{s}^{2}$.

Example 13: The velocity of an electron is given by the formula $v(t)=5 \sin \left(2 t-\frac{\pi}{4}\right)$.
a) Find the first time when its acceleration is at its maximum.
b) Find a formula for the displacement of the electron, given that $s=0$ when $t=0$.

Past Paper Example 1: A curve has equation $y=(2 x-9)^{\frac{1}{2}}$. Part of the curve is shown in the diagram opposite.
a) Show that the tangent to the curve at the point where $x=9$ has equation $y=\frac{1}{3} x$.

b) Find the coordinates of A, and hence find the shaded area.

Past Paper Example 2: A curve for which $\frac{d y}{d x}=3 \sin 2 x$ passes through the point $\left(\frac{5 \pi}{12}, \sqrt{3}\right)$. Find y in terms of x.

Past Paper Example 3: Find the values of x for which the function $f(x)=2 x+3+\frac{18}{x-4}, x \neq 4$, is increasing.

Relationships \& Calculus Unit Topic Checklist: Unit Assessment Topics in Bold			
	Topic	Questions	Done?
$\begin{aligned} & \frac{n}{10} \\ & \text { E } \\ & 0 \\ & 0 \\ & \frac{1}{0} \end{aligned}$	Synthetic Division	Exercise 7C, Q 2, 4	Y/N
	Factorising polynomials	Exercise 7E, Q 1 - 7	Y/N
	Solving polynomial equations	Exercise 7G, Q 2, 4, 6	Y/N
	Finding coefficients	Exercise 7F, Q 1, 2	Y/N
	Functions from graphs	Exercise 7H, Q 1-15	Y/N
	Roots using $b^{2}-4 a c$	Exercise 8H, Q 1, 2; Exercise 81, Q 1, 2, 5, 6, 8	Y/N
		Exercise 8K, Q 10, 12	Y/N
	Solving Trig Equations (including use of double angle formulae)	Exercise 4H, Q 1, 2, 5; Exercise 4I, Q 1-3	Y/N
		Exercise 11H, Q 1, 2	Y/N
	Finding derivatives of functions	Exercise 6F, (all); Exercise 6G, (all)	Y/N
		Exercise 6H, Q 2, 4, 5, 7, 9; Exercise 6I, Q 1, 2, 4	Y/N
	Equations of tangents to curves	Exercise 6J, Q 1, 2; Exercise 6S, Q 13	Y/N
	Increasing \& decreasing functions	Exercise 6L, Q 1-7	Y/N
	Stationary points	Exercise 6M, (all); Exercise 6S, Q 14	Y/N
	Curve Sketching	Exercise 6N, Q 1 - 3	Y/N
	Closed Intervals	Exercise 60, Q 2	Y/N
	Finding indefinite integrals	Exercise 9H, (all); Exercise 91, Q 1 (a-n)	Y/N
	Definite Integrals	Exercise 9L, Q 1-3	Y/N
	Differentiating and integrating $\sin x$ and $\cos x$	Exercise 14C, Q 1, 2, 5, 6	Y/N
	The Chain Rule	Exercise 14H, Q 3, 4, 5; Exercise 14I, Q 1, 3, 4, 5	Y/N
	Integrating a (.....) ${ }^{\text {n }}$	Exercise 14J, Q 1, 4, 5, 8	Y/N
	Integrating $\sin (a x+b)$ and	Exercise 14K, Q 1, 2, 5, 6, 8	Y/N
	$\cos (a x+b)$	Exercise 14L, Q 10, 12, 13	Y/N

