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The Circle 
 

If we draw, suitable to relative axes, a circle, radius r, centred on the origin, then the distance from 

the centre of any point P (x, y) could be determined to be  22 yxd  . 
 

 

As the shape is a circle, then this distance is equal to the radius. It 
therefore follows that: 

 

Since  22 yxr  , then  222 yxr   
 

Therefore,  
 

The equation x 2 + y 2 = r 2 describes a circle  
with centre (0, 0) and radius r 

 
Example 1: Write down the centre and radius of each circle. 

a) x 2 + y 2 = 64  b) x 2 + y 2 = 361  c) x 2 + y 2 = 
25
3  

     
     
     
 

Example 2: State where the points (-2, 7), (6, -8) and (5, 9) lie in relation to the circle x 2 + y 2 = 100. 
 
 
 
 
 
 
 
 
 

Circles with Centres Not at the Origin 
 

The radius in the above circle is the distance between (x , y ) and 

the origin, i.e.  22 0)-(y0)-(xr  . If we move the centre to the 

point (a , b), then  22 b)-(ya)-(xr  . 

 

 
Squaring both sides, we can now also say that: 

 

The equation (x – a) 2 + (y – b) 2 = r 2 describes a circle with 
centre (a, b) and radius r 

 

Example 3: Write down the centre and radius of each circle. 
 

a) (x – 1) 2 + (y + 3) 2 = 4  b) (x + 9) 2 + (y - 2) 2 = 20  c) (x – 5) 2 + y 2 = 400 
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Example 4: A is the point (4, 9) and B is the point (-2, 1).  
                  Find the equation of the circle for which AB is the diameter. 

 

Example 5: Points P, Q and R have coordinates (-10, 2), (5, 7) and (6, 4) respectively. 
 

a) Show that triangle PQR is right angled at Q.  b) Hence find the equation of the circle passing 
through points P, Q and R.  

   
   
   
   
   
   
   
   
   
   
 

The General Equation of a Circle 
 

For the circle described in Example 3a, we could expand the brackets and simplify to obtain the 
equation x 2 + y 2 – 2x + 6y + 6 = 0, which would also describe a circle with centre (1, -3) and radius 2. 
 

For x 2 + y 2 + 2gx + 2fy + c   = 0,  Therefore, the circle described by 
     

(x 2 + 2gx) + (y 2 + 2fy)   = - c    x
 2 + y 2 + 2gx + 2fy + c = 0 

     

(x 2 + 2gx + g 2) + (y 2 + 2fy + f  2)   = g 2 + f  2 - c   
has centre (-g, -f ) and r =  cfg

22      

(x + g)2 + (y + f )2   = (g 2 + f  2 – c) 
   

Example 6: Find the centre and radius of the 
circle with equation x 2 + y 2 – 4x + 8y – 5 = 0 

Example 7: State why the equation  
x
 2 + y 2 – 4x  – 4y  + 15 = 0 does not represent a circle. 

   
   
   
   
   
   
   
   
   

Example 8: State the range of values of c such 
that the equation x 2 + y 2 – 4x + 6y + c = 0 
describes a circle. 

Example 9: Find the equation of the circle concentric 
with x 2 + y 2 + 6x – 2y - 54 = 0 but with radius half its 
size. 
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Intersection of Lines and Circles 
 

As with parabolas, there are three possibilities when a line and a circle come into contact, and we 
can examine the roots of a rearranged quadratic equation to determine which has occurred. However: 

 

We CANNOT make the circle and line equations equal to each other: the line equation must be 
substituted INTO the circle equation to obtain our quadratic equation! 

 

     
Two points of contact  One point of contact  No points of contact 

2 distinct roots  Equal roots  No real roots 
b
 2 – 4ac > 0  b

 2 – 4ac = 0  b
 2 – 4ac < 0 

 

As with parabolas, the most common use of this technique is to show tangency. 
 

Example 10: Find the coordinates of the points of intersection of the line y = 2x – 1  
and the circle x 2 + y 2 – 2x  – 12y + 27 = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 11: Show that the line y = 3x + 10 is a tangent to the circle x 2 + y 2 – 8x – 4y – 20 = 0  
and establish the coordinates of the point of contact. 
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Example 12: Find the equations of the tangents to the  
                circle  

 

x
 2 + y 2 = 9 from the point (0, 5). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tangents to Circles at Given Points 
 

Remember: at the point of contact, the radius and tangent meet at 90° (i.e., they are perpendicular). 
 

 

To find a tangent at a 
given point: 

 Find the centre of the circle 
 Find the gradient of the radius 

(joining C and the given point) 
 Find the gradient of the tangent (flip 

and make negative) 
 Sub the gradient and the original 

point into y – b = m (x – a) 
 

Example 13: Find the equation of the tangent to x 2 + y 2 – 14x + 6y – 87 = 0 at the point (-2, 5). 
 
 
 
 
 
 
 
 
 
 
 

x 

y 

O 

5 

C 

P  



I Bryson. Amendments by E Maxwell, M Doran, E Traynor & C Cassells    Page 30 of 107 

Past Paper Example 1: A circle has centre C (-2, 3) and passes 
through point P (1, 6).  

 

 

a) Find the equation of the circle. 
 
 
 
 
 
 

b) PQ is a diameter of the circle. Find the equation of the tangent 
to this circle at Q. 

 
 
 
 

Past Paper Example 2:  
 

a) Show that the line with equation y = 3 – x is a tangent to the circle with equation 
 

x
2 + y2 + 14x + 4y – 19 = 0 

 

and state the coordinates of P, the point of contact. 
 
 
 
 
 
 
 
 
 
 
 
 

b) Relative to a suitable set of coordinate axes, the   
    diagram opposite shows the circle from a) and a   
    second smaller circle with centre C. 

 

 

The line y = 3 – x is a common tangent at the point P. 
 

The radius of the larger circle is three times the   
radius of the smaller circle. 
 

Find the equation of the smaller circle. 
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Past Paper Example 3: Given that the equation 
 

x2 + y2 – 2px – 4py + 3p + 2 = 0 
 

represents a circle, determine the range of values of p. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Past Paper Example 4: Circle P has equation 2 2 8 10 9 0x y x y     . Circle Q has centre (-2, -1) and   

                                    radius  2 2  . 
 

a)  i) Show that the radius of circle P is  4 2 . 
    ii) Hence show that circles P and Q touch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Find the equation of the tangent to circle Q at the point (-4, 1) 
 
 
 
 
 
 
 
 
 
 
   


