Finding the Equation of a Quadratic Function From Its Graph: $y=k(x-a)(x-b)$

If the graph of a quadratic function has roots at $x=-1$ and $x=5$, a reasonable guess at its equation would be $y=x^{2}-4 x-5$, i.e. from $y=(x+1)(x-5)$.

However, as the diagram shows, there are many parabolas which pass through these points, all of which belong to the family of functions $y=k(x+1)(x-5)$.
To find the equation of the original function, we need the roots and one other point on the curve (to allow us to determine the value of k).

Example 1: State the equation of the graph below in the form $y=a x^{2}+b x+c$.

Completing the Square (Revision)

The diagram shows the graphs of two quadratic functions.
If the graph of $y=x^{2}$ is shifted q units to the right, followed by r units up, then the graph of $y=(x-q)^{2}+r$ is obtained.
As the turning point of $y=x^{2}$ is $(0,0)$, it follows that the new curve has a turning point at (q, r).
A quadratic equation written as $y=p(x-q)^{2}+r$ is said to be in the completed square form.

Example 2: (i) Write the following in the form $y=(x+q)^{2}+r$ and find the minimum value of y.
(ii) Hence state the minimum value of y and the corresponding value of x.
a) $y=x^{2}+6 x+10$
b) $y=x^{2}-3 x+1$

Completing the Square when the x^{2} Coefficient $\neq 1$

Example 3: Write $y=3 x^{2}+12 x+5$ in the form $y=p(x+q)^{2}+r$.

Example 4: Write $y=5+12 x-x^{2}$ in the form $y=p-(x+q)^{2}$.

Example 5:

a) Write $y=x^{2}-10 x+28$ in the form $y=(x+p)^{2}+q$.
b) Hence find the maximum value of $\frac{18}{x^{2}-10 x+28}$

Solving Quadratic Equations via Completing the Square

Quadratic equations which do not easily factorise can be solved in two ways: (i) completing the square, or (ii) using the quadratic formula. In fact, both methods are essentially the same, as the quadratic formula is obtained by solving $y=a x^{2}+b x+c$ via completing the square.
Example 6: State the exact values of the roots of the equation $2 x^{2}-4 x+1=0$ by:
a) using the quadratic formula
b) completing the square

Solving Quadratic Inequations

Quadratic inequations are easily solved by making a sketch of the equivalent quadratic function, and determining the regions above or below the x-axis.
Example 7: Find the values of x for which:
a) $2 x^{2}-7 x+6>0$
b) $2 x^{2}-7 x+6<0$

First, sketch $y=2 x^{2}-7 x+6$

Roots of Quadratic Equations and The Discriminant (Revision)

For $y=a x^{2}+b x+c, b^{2}-4 a c$ is known as the discriminant.

- $b^{2}-4 a c>0$ gives real, unequal roots
- $b^{2}-4 a c=0$ gives real, equal roots
- $b^{2}-4 a c<0$ gives NO real roots

If $b^{2}-4 a c$ gives a perfect square, the roots are RATIONAL
If $b^{2}-4 a c$ does NOT give a perfect square, the roots are IRRATIONAL (i.e. surds)

Example 8: Determine the nature of the roots of the equation $4 x(x-3)=9$

Example 9: Find the value(s) of p given that $2 x^{2}+4 x+p=0$ has real roots.

Example 10: Find the value(s) of r given that $x^{2}+(r-3) x+r=0$ has no real roots.

To find the points of contact between a line and a curve, we make the curve and line equations equal (i.e. make $y=y$) to obtain a quadratic equation, and solve to find the x-coordinates.
By finding the discriminant of this quadratic equation, we can work out how many points of contact there are between the line and the curve. There are 3 options:

| Two points of contact |
| :---: | :---: | :---: | :---: |
| 2 distinct roots |
| $b^{2}-4 a c>0$ |\quad| One point of contact |
| :---: |
| Equal roots |
| $b^{2}-4 a c=0$ |

The most common use for this technique is to show that a line is a tangent to a curve
Example 11: Show that the line $y=3 x-13$ is a tangent to the curve $y=x^{2}-7 x+12$, and find the coordinates of the point of contact.

Example 12: Find two values of m such that $y=m x-7$ is a tangent to $y=x^{2}+2 x-3$

Past Paper Example 1: Express $2 x^{2}+12 x+1$ in the form $a(x+b)^{2}+c$.

Past Paper Example 2: Given that $2 x^{2}+p x+p+6=0$ has no real roots, find the range of values for p.

Past Paper Example 3: Show that the roots of $(k-2) x^{2}-3 k x+2 k=-2 x$ are always real.

