Graphs of Functions

Sketching a Quadratic Graph (Revision)

To sketch a quadratic graph:

- Find the roots (set y = 0)
- Find the y intercepts (set x = 0)
- Find the turning point (x value is halfway between roots; sub. into formula to find y)

Example 1: Sketch and annotate the graph of $y = x^2 - 2x - 15$

Example 2: Sketch and annotate the graph of $y = x^2 - 4x + 4$

Note: when quickly sketching a quadratic graph, the roots and shape ("happy" or "sad" face) are enough.

Graphs of Functions

Sketching Graphs (Revision)

In the exam, diagrams are provided whenever the question involves a graph. However, this is not the case when working from the textbook: it is therefore important that we are able to sketch basic graphs where necessary, as often the question becomes simpler when you can see it.

Example 3: in the spaces provided, make a **basic** sketch of the graph(s) of the function(s) stated.

Example 6: Sketch the graphs of $y = \sin x^\circ$, $y = \cos x^\circ$ and $y = \tan x^\circ$ below.

For trig graphs, how soon the graph repeats itself horizontally is known as the period, and half of the vertical height is known as the amplitude.

Function	Period	Amplitude
$y = \sin x^{\circ}$		
$y = \cos x^{\circ}$		
y = tanx °		

For the graphs of:


```
c) y = -3\sin 3x^{\circ} - 2
```


Transformation of Graphs

We have seen how the graph of y = sin(x) is different to that of y = sin(2x), and how $y = x^2$ differs from $y = (x - 1)^2$. The six operations below are used to transform the graph of a function:

I Bryson. Amendments by E Maxwell, M Doran, E Traynor & C Cassells

Past Paper Example: The diagram shows a sketch of the function y = f(x).

To the diagram, add the graphs of:

a) y = f(2x)

b) y = 1 - f(2x).

