Sketching a Quadratic Graph (Revision)

To sketch a quadratic graph:

- Find the roots (set $y=0$)
- Find the \boldsymbol{y} - intercepts (set $\boldsymbol{x}=0$)
- Find the turning point (x value is halfway between roots; sub. into formula to find y)

Example 1: Sketch and annotate the graph of $y=x^{2}-2 x-15$

Example 2: Sketch and annotate the graph of $y=x^{2}-4 x+4$

Sketching Graphs (Revision)

In the exam, diagrams are provided whenever the question involves a graph. However, this is not the case when working from the textbook: it is therefore important that we are able to sketch basic graphs where necessary, as often the question becomes simpler when you can see it.
Example 3: in the spaces provided, make a basic sketch of the graph(s) of the function(s) stated.
a) $y=2 x+1$
b) $3 x+4 y-12=0$
c) $y=-1$ and $x=5$

d) $y=x^{2}$ and $y=4$
e) $y=x^{2}-4$
f) $y=(x-2)^{2}$ and $y=2 x-x^{2}$

Example 4: Sketch and annotate the graph of

Example 5: Sketch and annotate the graph of $y=(x+3)^{2}+1$

Example 6: Sketch the graphs of $y=\sin x^{\circ}, y=\cos x^{\circ}$ and $y=\tan x^{\circ}$ below.

For trig graphs, how soon the graph repeats itself horizontally is known as the period, and half of the vertical height is known as the amplitude.

Function		Period
$y=\sin x^{\circ}$		
$y=\cos x^{\circ}$		
$y=\tan x^{\circ}$		

For the graphs of:
$y=a \sin b x^{\circ}+c$ and
$y=a \cos b x^{\circ}+c:$
$a=$ amplitude
$b=$ waves in 360°
$c=$ vertical shift

$$
y=a \tan b x^{\circ}+c:
$$

$b=$ "waves" in 180° $c=$ vertical shift

Example 7: Sketch the graphs of:
a) $y=\sin 2 x^{\circ}$

c) $y=-3 \sin 3 x^{\circ}-2$

Compound Angles

A compound angle is one containing two parts, e.g. $(x-60)^{\circ}$. The graphs of compound angles can be thought of as the trig version of $y=f(x-a)$, i.e. shifted left or right by a units.

Example 8: On the axes opposite, sketch:
a) $y=\sin x^{\circ}$
b) $y=\sin (x-45)^{\circ}$

We have seen how the graph of $y=\sin (x)$ is different to that of $y=\sin (2 x)$, and how $y=x^{2}$ differs from $y=(x-1)^{2}$. The six operations below are used to transform the graph of a function:
$y=f(x)+a$
$y=f(x)+a$ is obtained by sliding $y=f(x):$
Vertically upwards if $a>0$
Vertically downwards if $a<0$

$y=f(-x)$
$y=f(-x)$ is obtained by reflecting $y=f(x):$
in the y-axis

Multiple Transformations

Often, are asked to perform more than one transformation on a graph.
Where appropriate, always leave sliding vertically to last.
Example 9: Part of the graph of $y=f(x)$ is shown.
On separate diagrams, sketch:
a) $y=f(-x)+2$
b) $y=-\frac{1}{2} f(x+1)$

Past Paper Example: The diagram shows a sketch of the function $y=f(x)$.
To the diagram, add the graphs of:
a) $y=f(2 x)$
b) $y=1-f(2 x)$.

