A set is a group of numbers which share common properties. Some common sets are:

| Natural Numbers | $N=\{1,2,3,4,5, \ldots \ldots .$. |
| :---: | :---: |
| Whole Numbers | $W=\{0,1,2,3,4,5, \ldots .$. |
| Integers | $Z=\{\ldots . .,-3,-2,-1,0,1,2,3, \ldots .$. |
| Rational Numbers | $Q=$ all integers and fractions of them (e.g. $3 / 4,-5 / 8$, etc) |
| Real Numbers | $R=$ all rational and irrational numbers (e.g. $\sqrt{2}, \pi$, etc. ) |

Sets are written inside curly brackets. The set with no members " $\}$ " is called the empty set. $\in$ means "is a member of", e.g. $5 \in\{3,4,5,6,7\} \notin$ means "is not a member of", e.g. $5 \notin\{6,7,8\}$ A function is a rule which links an element in Set A to one and only one element in Set B.


The set that the function works on is called the domain; the values produced are called the range. For graphs of functions, we can think of the domain as the $\boldsymbol{x}$-values, and the range as the $\boldsymbol{y}$-values.

This means that any operation which produces more than one answer is not considered a function. For example, since $\sqrt{4}=2$ and $-2, ~ " ~ f(x)=\sqrt{x}$ " is not considered a function.

Example 1: Each function below is defined on the set of real numbers. State the range of each.
a) $f(x)=\sin x^{\circ}$
b) $g(x)=x^{2}$
c) $h(x)=1-x^{2}$

When choosing the domain, two cases MUST be avoided:
a) Denominators can't be zero
b) Can't find the square root of a negative value
e.g. For $f(x)=\frac{1}{x+5}, x \neq-5$, i.e. $\{x \in R: x \neq-5\} \quad$ e.g. For $g(x)=\sqrt{x-3}, x \geq 3$, i.e. $\{x \in R: x \geq 3\}$

Example 2: For each function, state a suitable domain.
a) $g(x)=\sqrt{3 x-2}$
b) $p(\theta)=\frac{2}{5-\theta}$
c) $f(y)=\frac{y^{2}}{\sqrt{y-1}}$

## Composite Functions

In the linear function $y=3 x-5$, we get $y$ by doing two acts: (i) multiply $x$ by 3 ; (ii) then subtract 5 . This is called a composite function, where we "do" a function to the range of another function.
e.g. If $h(x)$ is the composite function obtained by performing $f(x)$ on $g(x)$, then we say

$$
h(x)=f(g(x))(\text { " } f \text { of } g \text { of } x \text { ") }
$$

Example 3: $f(x)=5 x+1$ and $g(x)=3 x^{2}+2 x$.
a) Find $f(g(-1))$
b) Find $f(g(x))$
c) Find $f(f(x))$
d) Find $g(f(x))$

## NOTE: Usually, $f(g(x))$ and $g(f(x))$ are NOT the same!

Example 4: $f(x)=2 x+1, g(x)=x^{2}+6$
a) Find formulae for:
(i) $f(g(x))$
(ii) $g(f(x))$
b) Solve the equation $f(g(x))=g(f(x))$

Past Paper Example: Functions $f$ and $g$ are defined on a set of real numbers by
$f(x)=x^{2}+3$
$g(x)=x+4$
a) Find expressions for:
(i) $f(g(x))$
(ii) $g(f(x))$
b) Show that $f(g(x))+g(f(x))=0$ has no real roots

