A set is a group of numbers which share common properties. Some common sets are:

 Natural Numbers
 $N = \{1, 2, 3, 4, 5, \dots\}$

 Whole Numbers
 $W = \{0, 1, 2, 3, 4, 5, \dots\}$

 Integers
 $Z = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$

 Rational Numbers
 Q = all integers and fractions of them (e.g. $\frac{3}{4}$, $-\frac{5}{8}$, etc)

 Real Numbers
 R = all rational and irrational numbers (e.g. $\sqrt{2}, \pi$, etc.)

Sets are written inside curly brackets. The set with no members "{ }" is called the **empty set**.

 \in means "is a member of", e.g. 5 \in {3, 4, 5, 6, 7} \notin means "is not a member of", e.g. 5 \notin {6, 7, 8} A **function** is a rule which links an element in Set A to **one and only one** element in Set B.

The set that the function works on is called the **domain**; the values produced are called the **range**. For graphs of functions, we can think of the **domain** as the x - values, and the **range** as the y - values.

This means that any operation which produces more than one answer is not considered a function. For example, since $\sqrt{4} = 2$ and -2, "f(x) = \sqrt{x} " is not considered a function.

Example 1: Each function below is defined on the set of real numbers. State the **range** of each.

When choosing the domain, two cases	a) Denominators can't be zero
MUST be avoided:	b) Can't find the square root of a negative value

e.g. For
$$f(x) = \frac{1}{x+5}$$
, $x \neq -5$, i.e. $\{x \in \mathbb{R} : x \neq -5\}$ e.g. For $g(x) = \sqrt{X-3}$, $x \ge 3$, i.e. $\{x \in \mathbb{R} : x \ge 3\}$

Example 2: For each function, state a suitable domain.

a)
$$g(x) = \sqrt{3x-2}$$

b) $p(\theta) = \frac{2}{5-\theta}$
c) $f(y) = \frac{y^2}{\sqrt{y-1}}$

Composite Functions

In the linear function y = 3x - 5, we get y by doing two acts: (i) multiply x by 3; (ii) then subtract 5. This is called a **composite function**, where we "do" a function to the range of another function.

e.g. If h(x) is the composite function obtained by performing f(x) on g(x), then we say

Example 5: $f(x) = \frac{3}{x+1}$, $x \neq -1$. Find an expression for f(f(x)), as a fraction in its simplest form.

Past Paper Example: Functions *f* and *g* are defined on a set of real numbers by

$$f(x) = x^2 + 3$$
 $g(x) = x + 4$

a) Find expressions for:

(i) f(g(x))

(ii) g(f(x))

b) Show that f(g(x)) + g(f(x)) = 0 has no real roots