North Lanarkshire

Higher Mathematics Notes

2016/17

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$$
\mathbf{a . b}=|\mathbf{a}||\mathbf{b}| \cos \theta \text {, where } \theta \text { is the angle between } \mathbf{a} \text { and } \mathbf{b}
$$

or $\quad \mathbf{a . b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ where $\mathbf{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$

Trigonometric formulae: $\quad \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$

$$
\begin{aligned}
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

Table of standard integrals:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

Revision from Nattional 5

The graph of $y=m x+c$ is a st raight line, where m is t he gradient and c is t he y-int ercept.

Gradient is a measure of the steepness of a line. The gradient of the line joining point s $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by:

$$
\mathrm{m}_{\mathrm{AB}} \frac{\mathrm{y}_{2} \quad \mathrm{y}_{1}}{\mathrm{x}_{2}} \mathrm{x}_{1}
$$

Example 1: Find:

a) the gradient and y-int ercept of the line $y=2 x+5$
c) the gradient of the line joining $P(-2,4)$ and Q (3, -1)
b) the equation of the line with gradient -4 and y-intercept (0, -2)
d) the gradient of the line $3 y+4 x-11=0$

Equation of a Straight Line

$$
y=m x+c \quad \text { AND } \quad A x+B y+C=0
$$

Example 3: Find the equation of the line through $(-5,-1)$ with $m=\frac{2}{3}$, giving your answer in the form $A x+B y+C=0$.

Example 4: Sketch the line $5 x-2 y-24=0$ by finding the points where it crosses the x-and y axes.

The Angle with the x-axis

The gradient of a line can also be described as the angle it makes with the positive direction of the x-axis.
As the y-difference is OPPOSITE the angle and the x-difference is ADJACENT to it, we get:

$$
\mathrm{m}_{\mathrm{AB}} \quad \tan \theta
$$

(where θ is measured CLOCKWISE from the x-axis)

Example 5: Find the angle made with the positive direction of the x -axis and the lines:
a) $y=x-1$
b) $y=5-3 x$
c) joining the points (3, -2) and (7, 4)

Gradients of staight lines can be summarised as follows:
direct ion of the x-axis
b) lines sloping down from left to right have negat ive gradients and make obt use angles with the posit ive direction of t he x-axis
c) lines with equal gradients are parallel
d) horizontal lines (parallel to the x-axis) have gradient zero and equation $y=a$
e) vertical lines (parallel to the y-axis) have gradient undefined and equat ion $x=b$

If three (or more) points lie on the same line, they are said to be collinear.
Example 6: Prove that the points $D(-1,5), E(0,2)$ and $F(4,-10)$ are collinear.

Perpendicular Lines

If two lines are perpendicular to each other (i.e. they meet at 90°), then:

```
m1m2 = -1
```

Example 7: Show whether these pairs of lines are perpendicular:
a) $\begin{aligned} & x+y+5=0 \\ & x-y-7=0\end{aligned}$
b) $2 x-3 y=5$
$3 x=2 y+9$
c) $\begin{aligned} & y= 2 x-5 \\ & 6 y=10-3 x\end{aligned}$
\mid

When asked to find the gradient of a line perpendicular to another, follow these st eps:

1. Find the gradient of the given line
2. Flip it upside down
3. Change the sign (e.g. negat ive to positive)

Example 8: Find the gradients of the lines perpendicular to:
a) the line $y=3 x-12$
b) a line with gradient $=-1.5$
c) the line $2 y+5 x=0$
\mid

Example 9: Line L has equat ion $x+4 y+2=0$. Find the equation of the line perpendicular to L which passes through the point $(-2,5)$.

The midpoint of a line lies exactly halfway along it. To find t he coordinat es of a midpoint, find halfway bet ween the x - and y-coordinates of the points at each end of the line (see diagram).

The x-coordinate of M is halfway between -2 and 8 , and its y-coordinate is halfway between 5 and -3 .

In general, if M is the midpoint of $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$:

$$
\mathrm{M} \frac{\mathrm{x}_{1} \mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1} \mathrm{y}_{2}}{2}
$$

The perpendicular bisect or of a line passes through it s midpoint at 90°.
Example 10: Find the perpendicular bisect or of the line joining $F(-4,2)$ and $G(6,8)$.

To find the equation of a perpendicular bisector:

Find the gradient of the line joining the given points
Find the perpendicular gradient (flip and make negative)
Find the coordinates of the midpoint
Substitute int o $y-b=m(x-a)$

In a triangle, a line joining a corner to the midpoint of the

A line through a corner which is perpendicular to the opposite side is called an alt it ude.

The altitudes are concurrent at the orthocentre. The orthocentre isn't always located inside the triangle e.g. if the triangle is obt use.

A line at 90 to the midpoint is

The perpendicular bisectors are concurrent at the circumcentre. The circumcentre is the centre of the circle touched by the vert ices of the triangle.

For all triangles, the cent roid, orthocentre and circumcentre are collinear.

Example 11: A triangle has vertices $P(0,2), Q(4,4)$ and $R(8,-6)$.
a) Find the equat ion of the median through P.

To find the equation of a median:
Find the midpoint of the side opposite the given point
Find the gradient of the line j oining the given point and the midpoint Substitute into $y-b=m(x-a)$
b) Find the equat ion of the alt itude through R.

To find the equation of an alt it ude:
Find the gradient of the side opposite the given point
Find the perpendicular gradient (flip and make negat ive)
Substitute int o $y-b=m(x-a)$

Distance between Two Points

The dist ance bet ween any two points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and B
($\mathrm{x}_{2}, \mathrm{y}_{2}$) can be found easily by Pythagoras' Theorem.
If d is the dist ance between A and B, then:

$$
d \sqrt{x_{2}} \quad x_{1}^{2} \quad y_{2} \quad y_{1}^{2}
$$

Example 12: Calculate the distance between:
a) $A(-4,4)$ and $B(2,-4)$
b) $X(11,2)$ and $Y(-2,-5)$

Example 13: A is the point $(2,-1), B$ is $(5,-2)$ and C is $(7,4)$. Show that $B C=2 A B$.

Past Paper Example 1: The vert ices of triangle ABC are $A(7,9), B(-3,-1)$ and $C(5,-5)$ as shown:
The broken line represents the perpendicular bisect or of BC
a) Show that the equat ion of the perpendicular bisect or of BC is $\mathrm{y}=2 \mathrm{x}-5$

b) Find the equation of the median from C
c) Find the co-ordinates of the point of int ersect ion of the perpendicular bisect or of BC and the median from C .

Past Paper Example 2:

The line GH makes an angle of 30° with the y-axis as shown in the diagram opposite.

What is the gradient of GH?

