

My Level 3 52 Learning Intentions

Unit: Chemical Reactions, Acids & Alkalis

What I Need to Do for Level 3	Can I Do It?
Know that indicators, such as universal indicator, are chemicals which produce different colours when placed in acid and alkali/bases.	
Investigate and describe the colour changes of indicators when added to acid/bases.	
Investigate and describe the pH of some everyday substances.	
Identify substances as acidic (pH of less than 7), alkaline/basic (pH greater than 7) or neutral (equal to 7).	
Investigate and describe what happens to the pH when an acid is added to an alkali/basic.	
Identify indicators of chemical reactions such as colour change, precipitate formation, release of gas, and/or a detectable energy change.	
Find the relationship between particle size, concentration temperature and catalysts and the rate of a reaction.	
Explain how catalysts, including enzymes, can be used to speed up chemical reactions, and provide at least two everyday examples of reactions involving a catalyst.	

Unit: DNA & Reproduction

What I Need to Do for Level 3	Can I Do It? ☺ ⊗
Know that DNA is found in the nucleus of most	
cells and that it contains the instructions for	
the development and function of living things	
(genetic code).	
Describe a gene as a piece of DNA which	
controls specific characteristics in an individual	
and demonstrate understanding that every	
individual has a unique combination of genes.	
Describe DNA profiling as a way of using	
technology to analyse DNA to see a unique	
pattern for an individual and give examples of	
practical applications (paternity tests and	
forensics).	
Present reasoned arguments on the ethical	
implications of collection, processing, storage	
and ownership of genetic information or DNA	
profiles.	
Know that a sex cell (gamete) contains half the	
genetic information needed to a make a complete	
individual.	
Explain how the nuclei of an egg and a sperm	
(sex cells) fuse through the process of	
fertilisation and how the fertilised egg divides	
repeatedly to form an embryo.	
Identify the main structures within the	
pregnant womb (for example, placenta, amniotic	
fluid and umbilical cord) and describe their	
function.	
Give examples of substances, including toxins,	
which can cross the placenta from the mother to	
the embryo and demonstrate understanding of	
the potential damage to the embryo.	

Unit: Forces

What I Need to Do for Level 3	Can I Do It?
Draw on findings from investigations to explain how lubrication, streamlining and other methods can be used to reduce friction, reducing the energy lost and improving efficiency.	
Know that weight is a force caused by the Earth's (or other planet's) gravitational pull on an object, measured in newtons (N), and uses the formula $W = mg$ to calculate weight.	
Predict the effects on the weight of an object due to the gravitational field strength in different positions in the universe, for example, at different altitudes on Earth, on different planets and in deep space.	
Present a reasoned argument on the likelihood of life existing elsewhere in the universe including factors such as: the distance of planets from their stars, the number of stars in the universe and the availability of liquid water, nutrients and energy.	

Unit: The Periodic Table

What I Need to Do for Level 3	Can I Do It? ☺ ⊗
Investigate and describe properties of metals	
and non-metals, for example, appearance,	
conductivity of electricity, position in the	
Periodic Table and their uses linked to their	
properties.	
Know that elements are organised in the Periodic	
Table by atomic number, each with its own	
unique symbol, and that elements with similar	
chemical properties are placed together in	
vertical groups.	
Identify and name the groups 'alkali metals',	
'halogens' and 'noble gases' and describe their	
reactivity.	
Investigate and describe at least two examples	
of compounds with properties that are different	
from their constituent elements, for example,	
hydrogen explosion and electrolysis of water.	
Construct names of two-element compounds	
which are derived from the names of the	
elements, from which it is formed, with a suffix	
of-ide.	
Construct word equations for simple reactions,	
for example, carbon reacting with oxygen:	
carbon + oxygen → carbon dioxide.	
Identify elements present from simple molecular	
formulae.	
Give examples of pure substances and mixtures	
from everyday life.	

Unit: Biotechnology

What I Need to Do for Level 3	Can I Do It?
Apply knowledge from investigations to describe	
the essential resources that micro-organisms	
need to grow and reproduce, for example, food,	
water, warm temperature and a suitable pH.	
Draw conclusions from investigations to describe	
how conditions and chemicals can promote and	
restrict growth, including temperature,	
antibiotics and antifungals.	
Describe how microbes (for example, bacteria	
and viruses) can cause disease and infection and	
how barriers to infection provide a first line of	
defence, for example, skin, mucus and stomach	
acids.	
Describe how the immune system protects the	
body against disease if the first line of defence	
is breached, for example, through the action of	
white blood cells and production of antibodies.	
Apply knowledge of body defence mechanisms to	
explain how vaccinations can protect individuals	
and populations from disease.	

Unit: Enlightened

What I Need to Do for Level 3	Can I Do It?
Demonstrate through practical investigation how	
refraction can cause a change of direction of	
light as it passes from one material to another.	
Describe the practical applications of refraction	
in everyday situations, for example, in corrective	
lenses in glasses, and in magnifying glasses and	
optical instruments.	
Explain how a visible spectrum is produced as	
light passes through a prism.	
Describe the electromagnetic spectrum as a	
family of waves including Gamma Rays, X-Rays,	
Ultraviolet, Visible Light, Infrared, Microwaves,	
Television and Radio.	
Research at least one application of an	
electromagnetic wave beyond the visible in	
everyday life, giving advantages and limitations	
of that application.	

Independent Research

What I Need to Do for Level 3	Can I Do It? ☺ ⊗
Collaborate with others to research how	
scientists, and those who use science in their	
jobs, have contributed to the development of	
scientific ideas.	
Communicate findings in a suitable way to give an	
example of how scientists contribute to	
innovative research and development.	
Give examples of how skills developed through	
science are used in a wide variety of jobs and	
careers including science, technology,	
engineering and mathematics (STEM) careers.	
Demonstrate understanding of bias and	
separates fact from opinion taking into account a	
range of reasons for bias.	
Analyse the scientific content in media items	
and discuss the ethical implications of the	
scientific issue being explored.	
Research the formation, characteristics and	
uses of at least two common minerals, for	
example, quartz or gypsum.	
Present research findings on the advantages and	
disadvantages associated with the use of	
renewable energy sources and their impact on	
society.	
Interpret data and information to establish a	
link between the use of fertilisers and plant	
yield and nutrient levels in the soil.	
Research an agricultural method, for example,	
chemical fertilisers, herbicides, pesticides,	
organic methods, genetic modification (GM) and	
biological control and evaluate their impact on	
food production	