2019 Mathematics

Higher Paper 1 (Non-calculator)

Finalised Marking Instructions

© Scottish Qualifications Authority 2019
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.
(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \cdot{ }^{5} & \cdot 6 \\
.^{5} & x=2 & x=-4 \\
\cdot^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: • ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\bullet^{6} y=5 \text { and } y=-7 \quad \bullet^{6} x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43 $\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1) \text { written as } \\
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& =2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \\
& \text { gains full credit }
\end{aligned}
$$

- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.		- ${ }^{1}$ start to differentiate - ${ }^{2}$ complete derivative and equate to 0 -3 factorise derivative - ${ }^{4}$ process cubic for x	- ${ }^{1} 2 x^{3} \ldots$ or $\ldots-6 x^{2}$ - $2 x^{3}-6 x^{2}=0$ - $2 x^{2}(x-3)$ - 40 and 3	4

1. \bullet^{2} is only available if ' $=0$ ' appears at either \bullet^{2} or \bullet^{3} stage, however see Candidate A.
2. Accept $2 x^{3}=6 x^{2}$ for \bullet^{2}.
3. Accept $x^{2}(2 x-6)$ for \bullet^{3}.
4. For candidates who divide by x or x^{2} throughout see Candidate B.
5. \bullet^{3} is available to candidates who factorise their derivative from \bullet^{2} as long as it is of equivalent difficulty.
6. $x=0$ and $x=3$ must be supported by valid working for \bullet^{4} to be awarded.

Commonly Observed Responses:

Candidate A

Stationary points when $\frac{d y}{d x}=0$
$\frac{d y}{d x}=2 x^{3}-6 x^{2}$
$\bullet^{1} \checkmark \bullet^{2} \checkmark$
$\frac{d y}{d x}=2 x^{2}(x-3)$
$x=0$ and $x=3$

Candidate B

$\begin{array}{ll}2 x^{3}-6 x^{2}=0 & \bullet^{1} \downarrow \bullet^{2} \checkmark \\ 2 x^{3}=6 x^{2} & \bullet^{3} \wedge \\ x=3 & \bullet^{4} \boldsymbol{x}\end{array}$
Dividing by x^{2} is not valid as $x=0$ is a solution.

	Question	Generic scheme	Illustrative scheme	Max mark
3.	3.	- ${ }^{1}$ find radius of circle C_{1} -2 state equation of circle C_{2}	- 16 stated or implied by • ${ }^{2}$ $\bullet^{2}(x-4)^{2}+(y+2)^{2}=36$	2
Notes:				
1. Accept $\sqrt{3^{2}+1^{2}+26}=6$ or $\sqrt{-3^{2}+-1^{2}+26}=6$ for \bullet^{1}. 2. Do not accept $\sqrt{-3^{2}-1^{2}+26}=6$ for \bullet^{1}. 3. Do not accept $(x-4)^{2}+(y+2)^{2}=6^{2}$ for \bullet^{2}. 4. For candidates whose working for $g^{2}+f^{2}-c$ does not arrive at a positive value, no marks are available. See Candidate A				
Commonly Observed Responses:				
Candidate A - 'fudging' negative values$\begin{aligned} & \sqrt{3^{2}+1^{2}-26}=4 \\ & (x-4)^{2}+(y+2)^{2}=16 \end{aligned}$				

1. Correct answer with no working award $0 / 3$.
2. Do not penalise $9=m 6+c$ or $11=m 9+c$ at \bullet^{1} and \bullet^{2}.
3. For candidates who state $m=\frac{2}{3}, c=5$ and then verify that these values work for the given terms, award 2/3.

Commonly Observed Responses:

	(b)	$\bullet \bullet^{4}$ calculate term	$\bullet^{4} \frac{37}{3}$ or $12 \frac{1}{3}$	1

4. The answer in (b) must be consistent with the values found in (a).
5. Accept $12 \cdot \dot{3}$ or $12 \cdot 3 \ldots$ for \bullet^{4}. Do not accept a rounded answer.

Commonly Observed Responses:

Question		Generic scheme		Illustrative scheme		$\begin{gathered} \begin{array}{c} \text { Max } \\ \text { mark } \end{array} \\ \hline 3 \end{gathered}$
5.	(a)	- ${ }^{1}$ find an \bullet^{2} find a s compar \bullet^{3} approp		$\begin{aligned} & \bullet \text { eg } \overrightarrow{\mathrm{AB}}=\left(\begin{array}{r} 3 \\ -6 \\ 3 \end{array}\right) \\ & \bullet^{2} \text { eg } \overrightarrow{\mathrm{BC}}=\left(\begin{array}{r} 4 \\ -8 \\ 4 \end{array}\right) \therefore \overrightarrow{\mathrm{AB}}=\frac{3}{4} \overrightarrow{\mathrm{BC}} \end{aligned}$ ${ }^{3}{ }^{3} \ldots \Rightarrow A B$ is parallel to $B C$ (common direction) and B is a common point $\Rightarrow A, B$ and C are collinear.		
Notes:						
1. Do not penalise inconsistent vector notation (eg lack of arrows or brackets). 2. Where \bullet^{2} is not awarded, if a candidate states that $\overrightarrow{A B}=\overrightarrow{B C}$, only \bullet^{1} is available. 3. - ${ }^{3}$ can only be awarded if a candidate has stated 'parallel', 'common point' and 'collinear'. 4. Candidates who state that 'points are parallel' or 'vectors are collinear' or 'parallel and share common point \Rightarrow collinear' do not gain \bullet^{3}. There must be reference to points A, B and C. 5. Do not accept 'a, b and c are collinear' at • ${ }^{3}$.						
Commonly Observed Responses:						
Candidate A - missing labels $\Rightarrow A B$ is parallel to $B C$ and B is a common point $\Rightarrow A, B$ and C are collinear $\cdot \sqrt{ } 1$ Candidate B $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{r}3 \\ -6 \\ 3\end{array}\right)$ $\overrightarrow{\mathrm{BC}}=\left(\begin{array}{r}4 \\ -8 \\ 4\end{array}\right)$ $\left(\begin{array}{r}3 \\ -6 \\ 3\end{array}\right)=3\left(\begin{array}{r}1 \\ -2 \\ 1\end{array}\right)$ and $\begin{aligned} & \binom{4}{-8}=4\binom{1}{-2} \bullet{ }^{2} \downarrow \\ & \therefore \overrightarrow{\mathrm{AB}}=\frac{4}{3} \overrightarrow{\mathrm{BC}} \quad \begin{array}{l}\text { to correct working subsequent } \\ \text { made on previous line. }\end{array}\end{aligned}$ $\Rightarrow A B$ is parallel to $B C$ and B is a common point $\Rightarrow A, B$ and C are collinear $\quad \bullet^{3} \checkmark$						

Question		Generic scheme	Illustrative scheme	Max mark		
(b)	\bullet^{4} state ratio	$\bullet^{4} 3: 4$	$\mathbf{1}$			Notes:
:---						
6. Answers in (b) must be consistent with the components of the vectors in (a) or the comparison of						

6. Answers in (b) must be consistent with the components of the vectors in (a) or the comparison of the vectors in (a). See Candidates C and D.
7. In this case, the answer for \bullet^{4} must be stated explicitly in part (b).
8. The only acceptable variations for \bullet^{4} must be related explicitly to $A B$ and $B C$.

For $\frac{B C}{A B}=\frac{4}{3}, \frac{A B}{B C}=\frac{3}{4}$ or $B C: A B=4: 3$ stated in part (b) award \bullet^{4}. See Candidate E.
9. Accept unitary ratios for \bullet^{4}, eg $\frac{3}{4}: 1$ or $1: \frac{4}{3}$.
10. Where a candidate states multiple ratios which are not equivalent, award $0 / 1$.

Commonly Observed Responses:

Candidate C-using components of vectors
(a) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{r}3 \\ -6 \\ 3\end{array}\right)$ ${ }^{1} \downarrow$
$\overrightarrow{\mathrm{BC}}=\left(\begin{array}{r}4 \\ -8 \\ 4\end{array}\right)$
$\overrightarrow{\mathrm{BC}}=\frac{3}{4} \overrightarrow{\mathrm{AB}}$
(b) 3:4

Candidate E - acceptable variation
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{4}$
Ratio $=4: 3$
Ignore working subsequent to correct statement made on previous line.

Candidate D - using comparison of vectors
(a) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{r}3 \\ -6 \\ 3\end{array}\right)$
$\overrightarrow{\mathrm{BC}}=\left(\begin{array}{r}4 \\ -8 \\ 4\end{array}\right)$
$\overrightarrow{\mathrm{BC}}=\frac{3}{4} \overrightarrow{\mathrm{AB}}$
(b) $4: 3$
$-2 x$
$\bullet \sqrt{ } \cdot 1$
Candidate F - trivial ratio
Ratio is $1: 1$
$. 4 \longdiv { }$

| Question | | Generic scheme | Illustrative scheme
 mark |
| :--- | :--- | :--- | :--- | :--- |
| 6. | | | |

	Question	Generic scheme	Illustrative scheme	Max mark
7.		Method 1 - ${ }^{1}$ use $m=\tan \theta$ -2 find gradient of L - ${ }^{3}$ use property of perpendicular lines - ${ }^{4}$ determine equation of line	- $m=\tan 30^{\circ}$ - $2 \frac{1}{\sqrt{3}}$ - ${ }^{3}-\sqrt{3}$ - $4 y=-\sqrt{3} x-4$	4
		Method 2 - ${ }^{1}$ find angle perpendicular line makes with the positive directio of the x-axis. - ${ }^{2}$ use $m=\tan \theta$ -3 find gradient of perpendicular line - ${ }^{4}$ determine equation of line	Method 2 - $3^{\circ}+90^{\circ}=120^{\circ}$ stated or implied by \bullet^{2} - $^{2} m=\tan 120^{\circ}$ - ${ }^{3}-\sqrt{3}$ - $4 y=-\sqrt{3} x-4$	
Notes:				
1. In Method 1, where candidates make no reference to a trigonometric ratio or use an incorrect trigonometric ratio, \bullet^{1} and \bullet^{2} are unavailable. In Method 2, where candidates use an incorrect trigonometric ratio • ${ }^{2}$ and \bullet^{3} are unavailable. 2. Accept $y+4=-\sqrt{3}(x)$ at \bullet^{4}, but do not accept $y+4=-\sqrt{3}(x-0)$. 3. In Method $1, \bullet^{4}$ is only available if the candidate has attempted to use a perpendicular gradient.				
Commonly Observed Responses:				
	andidate A $m=\frac{1}{\sqrt{3}}$ (with $n_{\perp}=-\sqrt{3}$	$\begin{gathered} r \text { without diagram) } \bullet^{1} \wedge \bullet^{2} \boxed{\checkmark 2} \\ \bullet^{3} \boxed{\checkmark 1} \end{gathered}$	ndidate B $=\tan \theta$ (with or without diagr $=\frac{1}{\sqrt{3}}$	
	$\begin{aligned} & \text { andidate } \mathrm{C} \\ & n=\tan \theta=3 \\ & n=\frac{1}{\sqrt{3}} \end{aligned}$	$\begin{aligned} & \bullet^{1} x \\ & \bullet^{2} \boxed{ } 1 \end{aligned}$	$\begin{aligned} & \text { ndidate D } \\ & =\tan ^{-1} 30 \\ & =\frac{1}{\sqrt{3}} \end{aligned}$	
$\begin{array}{ll} \hline \text { Candidate } \mathbf{E} & \\ \tan 30=\frac{1}{\sqrt{3}} & \bullet^{1} \wedge \\ m_{\perp}=-\sqrt{3} & \bullet^{2} \sqrt{ } 1 \cdot \bullet^{3} \\ \hline \end{array}$				

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 8. | (a) | \bullet^{1} state integral | $\bullet^{1} \int_{-1}^{2}\left(-x^{2}+x+2\right) d x$ | $\mathbf{1}$ |

Notes:

1. Evidence for • ${ }^{1}$ may be appear in part (b). However, where candidates make no attempt to answer part (a), \bullet^{1} is not available.
2. \bullet^{1} is not available to candidates who omit the limits or ' $d x$ '.
3. \bullet^{1} is awarded for a candidates final expression for the area. However, accept $\int_{-1}^{2}\left(\left(x^{2}+2 x+3\right)-\left(2 x^{2}+x+1\right)\right) d x$ or $\int_{-1}^{2}\left(x^{2}+2 x+3\right) d x-\int_{-1}^{2}\left(2 x^{2}+x+1\right) d x$ without further working.
4. For $\int_{-1}^{2} x^{2}+2 x+3-2 x^{2}+x+1 d x$, see Candidates A and B .

Commonly Observed Responses:

Candidate A

(a) $\int_{-1}^{2} x^{2}+2 x+3-2 x^{2}+x+1 d x$

$$
\int_{-1}^{2}\left(-x^{2}+x+2\right) d x
$$

Treat missing brackets as bad form as subsequent working is correct.

Candidate B

(a) $\int_{-1}^{2} x^{2}+2 x+3-2 x^{2}+x+1 d x$
(b) $\int_{-1}^{2}\left(-x^{2}+x+2\right) d x$

- ${ }^{1}$ awarded in part (b)

Candidate C - error in simplification
(a) $\int_{-1}^{2}\left(x^{2}+2 x+3\right)-\left(2 x^{2}+x+1\right) d x$
$\int_{-1}^{2} x^{2}+x+2 d x$
$.^{1} \times$

Question	Generic scheme	Illustrative scheme	Max mark
(b)	- ${ }^{2}$ integrate expression from (a) - ${ }^{3}$ substitute limits - ${ }^{4}$ evaluate area	$\begin{aligned} & \bullet^{2}-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+2 x \\ & \bullet^{3}\left(-\frac{1}{3}(2)^{3}+\frac{1}{2}(2)^{2}+2(2)\right) \\ & \\ & -\left(-\frac{1}{3}(-1)^{3}+\frac{1}{2}(-1)^{2}+2(-1)\right) \end{aligned}$ - $4 \frac{9}{2}$	3
Notes:			
5. Where a candidate differentiates one or more terms at \bullet^{2} then \bullet^{2}, \bullet^{3} and \bullet^{4} are unavailable. 6. Do not penalise the inclusion of ' $+c$ ' or the continued appearance of the integral sign. 7. Candidates who substitute limits without integrating any term do not gain \bullet^{3} or \bullet^{4}. 8. Where a candidate arrives at a negative value at \bullet^{4} see Candidates D and E.			

Commonly Observed Responses:

Candidate D

$$
\begin{gathered}
\text { Eg } \int_{-1}^{2}\left(x^{2}-x-2\right) d x \\
\vdots \\
=-\frac{9}{2}=\frac{9}{2}
\end{gathered}
$$

However...
$=-\frac{9}{2}$, hence area is $\frac{9}{2}$.

Candidate E

$\operatorname{Eg} \int_{2}^{-1}\left(-x^{2}+x+2\right) d x$ $=-\frac{9}{2}$ cannot be negative so $\frac{9}{2}$ units $^{2} \quad \bullet^{4} x$
However...

$$
=-\frac{9}{2} \text {, hence area is } \frac{9}{2} \text {. }
$$

Candidate F - not using expression from (a)
(a) $\int_{-1}^{2} x^{2}+2 x+3 d x \quad \bullet^{1} \times$
(b) $\int_{-1}^{2}\left(x^{2}+2 x+3\right)-\left(2 x^{2}+x+1\right) d x$

$$
\begin{aligned}
= & {\left[-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+2 x\right]_{-1}^{2} } \\
= & \left(-\frac{1}{3}(2)^{3}+\frac{1}{2}(2)^{2}+2(2)\right) \\
& -\left(-\frac{1}{3}(-1)^{3}+\frac{1}{2}(-1)^{2}+2(-1)\right) \cdot \sqrt{3} \\
= & \frac{9}{2}
\end{aligned}
$$

Question		Generic scheme	Illustrative scheme	Max mark
10	(a)	- ${ }^{1}$ identify value of a	${ }^{1} 3$	1
Notes:				
Commonly Observed Responses:				
	(b)	- ${ }^{2}$ identify value of k	$\bullet^{2}-2$	1
Notes:				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
11.		- ${ }^{1}$ start to integrate -2 complete integration - ${ }^{3}$ substitute limits -4 evaluate integral	$\begin{aligned} & \bullet \quad \sin \left(3 x-\frac{\pi}{6}\right) \ldots \\ & \bullet^{2} \ldots \times \frac{1}{3} \\ & \bullet^{3}\left(\frac{1}{3} \sin \left(3 \times \frac{\pi}{9}-\frac{\pi}{6}\right)\right) \\ & -\left(\frac{1}{3} \sin \left(3 \times 0-\frac{\pi}{6}\right)\right) \\ & \bullet^{4} \frac{1}{3} \end{aligned}$	4
Notes:				

1. Where candidates make no attempt to integrate or start to integrate individual terms within the bracket or use another invalid approach eg $\sin \left(3 x-\frac{\pi}{6}\right)^{2}$ or $\int \cos (3 x)-\cos \left(\frac{\pi}{6}\right) d x$, award 0/4.
2. Do not penalise the inclusion of ' $+c$ ' or the continued appearance of the integral sign after \bullet^{1}.
3. Candidates who work in degrees from the start cannot gain \bullet^{1}. However, \bullet^{2}, \bullet^{3} and \bullet^{4} are still available.
4. ${ }^{1}$ may be awarded for the appearance of $\sin \left(3 x-\frac{\pi}{6}\right)$ in the first line of working, however see Candidates B and D.
5. \bullet^{4} is only available where candidates have considered both limits within a trigonometric function.
6. Where candidates use a mixture of degrees and radians, \bullet^{3} is not awarded. However, \bullet^{4} is still available.

Commonly Observed Responses:

Candidate A - using addition formula
$\int_{0}^{\frac{\pi}{9}}\left(\cos 3 x \cos \frac{\pi}{6}+\sin 3 x \sin \frac{\pi}{6}\right) d x$
$=\frac{1}{3} \sin 3 x \times \frac{\sqrt{3}}{2} \ldots$

$\ldots-\frac{1}{3} \cos 3 x \times \frac{1}{2}$	$\bullet \checkmark$
Candidate C - integrated in part	
$3 \sin \left(3 x-\frac{\pi}{6}\right)$	$\bullet \downarrow \downarrow \bullet^{2} \star$
$3 \sin \left(3 \times \frac{\pi}{9}-\frac{\pi}{6}\right)-3 \sin \left(0-\frac{\pi}{6}\right)$	$\bullet^{3}-1$
3	$\bullet 4$

Candidate B - integrated over two lines
$\int_{0}^{\frac{\pi}{9}}\left(\cos \left(3 x-\frac{\pi}{6}\right)\right) d x$
$=\sin \left(3 x-\frac{\pi}{6}\right)$
$=\frac{1}{3} \sin \left(3 x-\frac{\pi}{6}\right)$
Candidate \mathbf{D} - integrated in part

Question		Generic scheme	Illustrative scheme		Max mark
13.	(a)	(i)	\bullet •1 determine $\cos p$	$\bullet \frac{2}{\sqrt{5}}$	$\mathbf{1}$
		(ii)	\bullet^{2} determine $\cos q$	$\bullet^{2} \frac{3}{\sqrt{10}}$	1

Commonly Observed Responses:

Candidate A - no evidence of simplification
$\cos p=\frac{\sqrt{4}}{\sqrt{5}}$
$\cos q=\frac{\sqrt{9}}{\sqrt{10}}$

Candidate B-simplification in part (b)
(a) $\cos p=\frac{\sqrt{4}}{\sqrt{5}} \cos q=\frac{\sqrt{9}}{\sqrt{10}}$

$$
\bullet 1 \checkmark
$$

$$
\bullet \checkmark
$$

(b) $\sin (p+q)=\frac{5}{\ldots}$

Roots have been simplified in (b)

simplified in (b)	
Illustrative scneme	mark
$\bullet^{3} \sin p \cos q+\cos p \sin q$	3
$\bullet^{4} \frac{1}{\sqrt{5}} \times \frac{3}{\sqrt{10}}+\frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{10}}$	
$\cdot 5 \frac{1}{\sqrt{2}}$	

Notes:

2. Award \bullet^{3} for candidates who write $\sin \left(\frac{1}{\sqrt{5}}\right) \times \cos \left(\frac{3}{\sqrt{10}}\right)+\cos \left(\frac{2}{\sqrt{5}}\right) \times \sin \left(\frac{1}{\sqrt{10}}\right) \cdot \bullet^{4}$ and \bullet. are unavailable.
3. For any attempt to use $\sin (p+q)=\sin p+\sin q, \bullet^{4}$ and \bullet^{5} are unavailable.
4. At \bullet^{5}, accept answers such as $\frac{5}{\sqrt{50}}$ or $\frac{5}{5 \sqrt{2}}$ but not $\frac{5}{\sqrt{5} \times \sqrt{10}}$.
5. At \bullet^{5}, the answer must be given as a single fraction.
6. Do not penalise trigonometric ratios which are less than -1 or greater than 1 .

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
14.	(a)	- ${ }^{1}$ apply $m \log _{n} x=\log _{n} x^{m}$ - 2 apply - ${ }^{3}$ evaluate logarithm	$\bullet{ }^{1} \ldots \log _{10} 5^{2}$ stated or implied by \bullet^{2} $\bullet^{2} \log _{10}\left(4 \times 5^{2}\right)$ ${ }^{3} 2$	3
Notes:				
1. Each line of working must be equivalent to the line above within a valid strategy, however see Candidate A. 2. Do not penalise the omission of the base of the logarithm at \bullet^{1} or \bullet^{2}. 3. Correct answer with no working, award $0 / 3$.				
Commonly Observed Responses:				
Candidate A $2 \log _{10}(4 \times 5)$ $\bullet \boldsymbol{\bullet}$ $2 \log _{10}(20)$ $\log _{10}(20)^{2}$ $\bullet \boxed{\bullet 1} \bullet^{3} \wedge$				

Question		Generic scheme		Illustrative scheme	Max mark
	(b)	- ${ }^{4}$ app $\cdot{ }^{5}$ exp - ${ }^{6}$ solv	Method 1 $\log _{a} x-\log _{a} y=\log _{a} \frac{x}{y}$ s in exponential form or x	Method 1 - ${ }^{4} \log _{2} \frac{7 x-2}{3}=\ldots$ - $\frac{7 x-2}{3}=2^{5}$ - 614	
		- ${ }^{4}$ app - ${ }^{5}$ sim -6 solv	Method 2 $m \log _{n} x=\log _{n} x^{m}$ y or x	Method 2 ${ }^{4} \ldots=\log _{2} 2^{5}$ - ${ }^{5}$ eg $\log _{2} \frac{7 x-2}{3}=\ldots$ or $\log _{2}(7 x-2)=\log _{2}\left(3 \times 2^{5}\right)$ $\bullet^{6} 14$	
Notes:					
4. \bullet^{6} is only awarded if each line of working is equivalent to the line above within a valid strategy.					
Commonly Observed Responses:					
Candidate A - invalid working leading to solution $\log _{2} \frac{7 x-2}{3}=\log _{2} 5^{2}$$x=11$					
Candidate C$\begin{aligned} & \log _{2}\left(\frac{7 x-2}{3}\right)=5 \log _{2} 2 \\ & \log _{2} \frac{7 x}{3}-\frac{2}{3}=\log _{2} 2^{5} \end{aligned}$				Candidate D$\begin{aligned} & \log _{2}(7 x-2)-\log _{2} 3=\log _{2} 2^{5} \\ & \log _{2}\left(\frac{7 x-2}{3}\right)=\log _{2} 25 \end{aligned}$	

Question		Generic scheme	Illustrative scheme	Max mark
16.	(a)	-1 identify centre - 2 apply distance formula and demonstrate result	-1 $(1,-2)$ stated or implied by •2 -2 $\sqrt{(4-1)^{2}+(k-(-2))^{2}}$ leading to $\sqrt{k^{2}+4 k+13}$	2
Notes:				
1. Beware of candidates who 'fudge' their working between \bullet^{1} and \bullet^{2}.				
Commonly Observed Responses:				

2. Where a candidate has used an incorrect expression from part (a), \bullet^{3} is not available. However, \bullet^{4}, \bullet^{5} and \bullet^{6} are still available for dealing with an expression of equivalent difficulty.
3. Candidates who do not work with an inequation from the outset lose \bullet^{3}, \bullet^{4} and \bullet^{6}. However, \bullet^{5} is still available. See Candidate A.

Commonly Observed Responses:

Candidate A
$\sqrt{k^{2}+4 k+13}=5 \quad \bullet^{3} x$
$k^{2}+4 k-12=0$
.${ }^{4} x$
$k=-6, k=2$
For P to lie outside the circle
$k<-6, k>2$

Question		Generic scheme	Illustrative scheme	Max mark
17.	(a)	- ${ }^{1}$ expand brackets - ${ }^{2}$ use double angle formula for \sin -3 use trigonometric identity and express in required form	- $\sin ^{2} x-\sin x \cos x$ $-\sin x \cos x+\cos ^{2} x$ $\bullet^{2} \ldots-\sin 2 x \ldots$ $\cdot^{3} 1-\sin 2 x$	3
Notes:				
1. For correct answer with no working award 0/3.				
Commonly Observed Responses:				
$\begin{array}{ll} \text { Candidate A - incorrect notation } & \\ \sin x^{2}-2 \sin x \cos x+\cos x^{2} & \bullet^{1} x \\ 1-\sin 2 x & \bullet^{2} \downarrow \bullet^{3} x \end{array}$				
	(b)	- ${ }^{4}$ link to (a) and integrate one term - ${ }^{5}$ complete integration	$\begin{aligned} & \bullet^{4} \text { eg } \int(1-\sin 2 x) d x=x \ldots \\ & \bullet^{5} x+\frac{1}{2} \cos 2 x+c \end{aligned}$	2
Notes:				
2. \bullet^{4} and \bullet^{5} can only be awarded if the integrand is of the form $p+q \sin r x$. 3. Where the statement for \bullet^{3} appears with no relevant working, \bullet^{4} and \bullet^{5} are not available.				
Commonly Observed Responses:				

[END OF MARKING INSTRUCTIONS]

2019 Mathematics

Higher Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.

$$
\begin{aligned}
x^{2}+5 x+7 & =9 x+4 \\
x-4 x+3 & =0 \\
(x-3)(x-1) & =0 \\
x & =1 \text { or } 3
\end{aligned}
$$

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{lll}
& \bullet^{5} & \bullet 6 \\
\bullet^{5} & x=2 & x=-4 \\
\bullet^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\cdot 6 y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$$
\begin{aligned}
& \frac{15}{12} \text { must be simplified to .. or } 1 \frac{1}{4} \\
& \frac{43}{1} \text { must be simplified to } 43 \\
& \frac{45}{0 \cdot 3} \text { must be simplified to } 50 \\
& \frac{4 / 5}{3} \text { must be simplified to } \frac{4}{15} \\
& \sqrt{64} \text { must be simplified to } 8^{\star}
\end{aligned}
$$

*The square root of perfect squares up to and including 100 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1) \text { written as } \\
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& =2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \\
& \text { gains full credit }
\end{aligned}
$$

- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scoredout working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Question		Generic scheme		Illustrative scheme		Max mark
1.	(a)	- ${ }^{1}$ calculate th - ${ }^{2}$ calculate th \bullet^{3} determine	dpoint of A dient of BD on of BD	$\begin{aligned} & \bullet^{1}(-4,-3) \\ & \bullet^{2}-\frac{1}{3} \\ & \bullet^{3} \quad 3 y=-x-13 \end{aligned}$		3
Notes:						
1. \bullet^{2} is only available to candidates who use a midpoint to find a gradient. 2. \bullet^{3} is only available as a consequence of using the midpoint of $A C$ and the point B. 3. At \bullet^{3} accept any arrangement of a candidate's equation where constant terms have been simplified. 4. \bullet^{3} is not available as a consequence of using a perpendicular gradient.						
Commonly Observed Responses:						
Candidate A - Perpendicular Bisector of AC $\begin{array}{ll}\text { Midpoint }_{\mathrm{AC}}(-4,-3) & \bullet \bullet^{1} \downarrow \\ m_{\mathrm{AC}}=9 \Rightarrow m_{\perp}=-\frac{1}{9} & \bullet^{2} \star \\ 9 y+x+31=0 & \bullet{ }^{3} \boxed{ }\end{array}$ For other perpendicular bisectors award 0/3				Candidate B - Altitude through B $\begin{aligned} & m_{\mathrm{AC}}=9 \\ & m_{\perp}=-\frac{1}{9} \\ & 9 y+x=-61 \end{aligned}$	$\bullet^{1} \wedge$ $\bullet^{2} x$ - $\sqrt{\checkmark} 2$	
Candidate C - Median through A Midpoint $_{\mathrm{BC}}(4,-1)$ $\bullet^{1} \boldsymbol{x}$ $m_{\mathrm{AM}}=\frac{11}{9}$ $\bullet^{2} \boxed{ } \mathbf{~}$ $9 y-11 x+53=0$ $\bullet^{3}-2$				Candidate D - Median through C Midpoint $_{A B}(3,-10)$ $\begin{aligned} & m_{C M}=-\frac{8}{3} \\ & 3 y+8 x+6=0 \end{aligned}$	- ${ }^{1} x$ - $\quad \checkmark 1$ $\cdot \sqrt{\checkmark 2}$	

Quest	Generic scheme	Illustrative scheme	Max mark
(b)	-4 calculate gradient of $B C$ - 5 use property of perpendicular lines ${ }^{6}$ determine equation of AE	- ${ }^{4}-1$. ${ }^{5} 1$ -6 $y=x-7$	3
Notes:			
5. \bullet^{6} is only available to candidates who find and use a perpendicular gradient. 6. At \bullet^{6} accept any arrangement of a candidate's equation where constant terms have been simplified.			

Commonly Observed Responses:

Candidate E

Correct gradient from incorrect substitution

$$
\begin{array}{ll}
m_{\mathrm{BC}}=\frac{-3-11}{6+8}=-1 & \bullet^{4} \times \\
m_{\mathrm{AE}}=1 & \bullet^{5} \checkmark 1 \\
y=x-7 & \bullet^{6} \boxed{ }
\end{array}
$$

| (c) | \bullet^{7} find x or y coordinate
 \bullet^{8} find remaining coordinate of the
 point of intersection | $\bullet^{7} x=2$ or $y=-5$
 $\bullet^{8} y=-5$ or $x=2$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :---: |

Notes:

7. For $(2,-5)$ with no working, award $0 / 2$.

Commonly Observed Responses:

Question		Generic scheme		Illustrative scheme	Max mark
3.	(a)	-1 identify pathway		${ }^{1} \quad-\mathbf{p}+\mathbf{r}$	1
Notes:					
1. Accept $-\mathbf{P}+\mathbf{R}$ for \bullet^{1}.					
Commonly Observed Responses:					
	(b)	-2 state an appropriate pathway - ${ }^{3}$ express pathway in terms of \mathbf{p} and \mathbf{r}		$\bullet{ }^{2}$ eg $\overrightarrow{\mathrm{EB}}+\overrightarrow{\mathrm{BF}}$ stated or implied by ${ }^{3} \mathbf{p}-\mathbf{r}+\frac{3}{4} \mathbf{q}$ or equivalent	2
Notes:					
2. • ${ }^{3}$ can only be awarded for a vector expressed in terms of all three of \mathbf{p}, \mathbf{q} and \mathbf{r}.					
Commonly Observed Responses:					
Candidate A - incorrect expression in \mathbf{p}, \mathbf{q} and \mathbf{r} and no pathway stated $\mathbf{p}-\mathbf{r} \ldots$ Award 1/2			Candidate B - incorrect expression in \mathbf{p}, \mathbf{q} and \mathbf{r} and no pathway stated		

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 4. | (a) | \bullet^{1} state values of a and b | $\bullet^{1} a=0.973, b=30$ | 1 |

1. Accept $u_{n+1}=0.973 u_{n}+30$ for $\bullet{ }^{1}$.

Commonly Observed Responses:

(b)	(i)	- ${ }^{2}$ communicate condition for limit to exist	-2 a limit exists as the recurrence relation is linear and $-1<0.973<1$	1
	(ii)	-3 know how to find limit ${ }^{4}$ process limit and state estimated population	$\begin{array}{ll} \cdot{ }^{3} & L=0.973 L+30 \text { or } \\ & L=\frac{30}{1-0.973} \\ \cdot 4 & 1100 \end{array}$	2

2. For \bullet^{2} accept:
$-1<0.973<1$ or $|0.973|<1$ or $0<0.973<1$ with no further comment;
or statements such as " 0.973 lies between -1 and 1 ";
or $-1<a<1$ (as a is previously defined).
3. \bullet^{2} is not available for:
$-1 \leq 0.973 \leq 1$ or $0.973<1$;
or statements such as "it is between -1 and 1 "
4. Do not accept $L=\frac{b}{1-a}$ with no further working for \bullet^{3}.
5. For $L=1100$ with no working award \bullet^{3} and \bullet^{4}.

Commonly Observed Responses:

Candidate A - no rounding required

$u_{n+1}=0 \cdot 97 u_{n}+30$.$^{1} x$
L 30	
$\overline{1-0.97}$	
$L=1000$	-4 $\quad \checkmark 2$
Candidate C - no valid limit	
$u_{n+1}=2 \cdot 7 u_{n}+30$	-1
A limit does not exist as $2.7>1$	$\cdot^{2} \times$
$L=\frac{30}{1-2 \cdot 7}$	$\cdot^{3} \sqrt{ } 1$
1-2.7	
$L=0$	$.^{4} \times$

	Question	Generic scheme	Illustrative scheme	Max mark
5.	5.	-1 identify shape and roots - ${ }^{2}$ interpret shape	-1 parabola with roots at -2 and 4 -2 parabola with a minimum turning point at $x=1$	2
Notes:				
1. • ${ }^{1}$ and \bullet^{2} are only available for attempting to draw a 'parabola'.				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
6.	(a)	$\bullet{ }^{1}$ use compound angle formula - ${ }^{2}$ compare coefficients ${ }^{3}$ process for k -4 process for a and express in required form	- ${ }^{1} k \cos x^{\circ} \cos a^{\circ}-k \sin x^{\circ} \sin a^{\circ}$ stated explicitly $\bullet^{2} k \cos a^{\circ}=2, k \sin a^{\circ}=3$ stated explicitly -3 $\sqrt{13}$ - ${ }^{4} \sqrt{13} \cos (x+56 \cdot 3 \ldots)^{\circ}$	4

1. Accept $k\left(\cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}\right)$ for \bullet^{1}.

Treat $k \cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^{2} stage both contain k.
2. Do not penalise the omission of degree signs.
3. $\sqrt{13} \cos x^{\circ} \cos a^{\circ}-\sqrt{13} \sin x^{\circ} \sin a^{\circ}$ or $\sqrt{13}\left(\cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}\right)$ is acceptable for \bullet^{1} and \bullet^{3}.
4. \bullet^{2} is not available for $k \cos x^{\circ}=2, k \sin x^{\circ}=3$, however \bullet^{4} may still be gained. See Candidate F.
5. Accept $k \cos a^{\circ}=2,-k \sin a^{\circ}=-3$ for \bullet^{2}.
6. \cdot^{3} is only available for a single value of $k, k>0$.
7. \bullet^{4} is not available for a value of a given in radians.
8. Accept values of a which round to 56 .
9. Candidates may use any form of the wave function for \bullet^{1}, \bullet^{2} and \bullet^{3}.

However, \bullet^{4} is only available if the wave is interpreted in the form $k \cos (x+a)^{\circ}$.
10. Evidence for \bullet^{4} may not appear until part (b).

Commonly Observed Responses:

Candidate A	$\bullet^{1} \wedge$
$\sqrt{13} \cos a^{\circ}=2$	
$\sqrt{13} \sin a^{\circ}=3$	$\bullet^{2} \checkmark \bullet^{3} \checkmark$

Candidate B	
$k \cos x^{\circ} \cos a^{\circ}-k \sin x^{\circ} \sin a^{\circ}$	
$\begin{aligned} & \cos a^{\circ}=2 \\ & \sin a^{\circ}=3 \end{aligned}$	$0^{2} x$
$\begin{aligned} & \tan a^{\circ}=\frac{3}{2} \\ & a=56 \cdot 3 \end{aligned}$	Not consistent with equations at \bullet^{2}.
$\sqrt{13} \cos (x+$	6.3) ${ }^{\circ} \bullet^{3} \checkmark \bullet^{4} \times$

Candidate C	
$\cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}$	
$\cos a^{\circ}=2$	$\bullet^{1} \star$
$\sin a^{\circ}=3$	$\bullet^{2} \boxed{ }$
$k=\sqrt{13}$	$\bullet^{3} \checkmark$
$\tan a^{\circ}=\frac{3}{2}$	
$a=56 \cdot 3$	
$\sqrt{13} \cos (x+56 \cdot 3)^{\circ}$	$\bullet^{4} x$

Question		Generic scheme		Illustrative scheme		Max mark
7.	(a)	Method 1 - ${ }^{1}$ identify common factor - ${ }^{2}$ complete the square - ${ }^{3}$ process for r and write in required form		Method 1 $\bullet^{1}-6\left(x^{2}-4 x \ldots\right.$... stated or implied by \bullet^{2} $\bullet^{2}-6(x-2)^{2} \ldots$ - ${ }^{3}-6(x-2)^{2}-1$		3
		${ }^{1}{ }^{1}$ expa ${ }^{-2}$ equa ${ }^{-3}$ proc requ	od 2 ed square form nts d r and write in	Method 2 - ${ }^{1} p x^{2}+2 p q x+p q^{2}+r$ $\bullet \quad p=-6,2 p q=24 p q^{2}$ - ${ }^{3}-6(x-2)^{2}-1$		
Notes:						
1. $-6(x-2)^{2}-1$ with no working gains \bullet^{1} and \bullet^{2} only. However, see Candidate E. 2. \bullet^{3} is not available in cases where $p>0$.						
Commonly Observed Responses:						
Candidate A $\begin{array}{ll} -6\left(x^{2}-4\right)-25 & \\ -6\left((x-2)^{2}-4\right)-25 & \bullet \cdot \checkmark \bullet^{2} \checkmark \\ -6(x-2)^{2}-1 & \bullet^{3} \checkmark \end{array}$ See the exception to general marking principle (h)				Candidate B$\begin{aligned} & p x^{2}+2 p q x+p q^{2}+r \\ & p=-6,2 p q=24, p q^{2}+r=-25 \\ & q=-2, r=-1 \end{aligned} \underbrace{\bullet^{3} \downarrow}_{\begin{array}{l} \bullet^{3} \text { is lost as answer is not in } \\ \text { completed square form } \end{array}} \begin{aligned} & \bullet^{2} \downarrow \\ & \bullet^{3} \wedge \end{aligned}$		
Candidate C$\begin{array}{ll} -6\left(x^{2}+24 x\right)-25 & \cdot{ }^{1} x \\ -6\left((x+12)^{2}-144\right)-25 & \bullet^{2}-1 \\ -6(x+12)^{2}+839 & e^{3}-1 \end{array}$				Candidate D$\begin{array}{ll} -6\left((x+12)^{2}-144\right)-25 & \bullet^{1} \wedge \bullet^{2} x \\ -6(x+12)^{2}+839 & \bullet^{3} \downarrow 1 \end{array}$		
Candidate E $-6(x-2)^{2}-1$ Check: $=-6\left(x^{2}-4 x+4\right)-1$ $\begin{aligned} & =-6 x^{2}+24 x-24-1 \\ & =-6 x^{2}+24 x-25 \end{aligned}$ Award 3/3				Candidate F$\begin{array}{ll} -6 x^{2}+24 x-25 & \\ =6 x^{2}-24 x+25 & \\ =6\left(x^{2}-4 x \ldots\right. & \\ =6(x-2)^{2} \ldots & \\ =-6(x-2)^{2} \ldots & \bullet^{2} x \end{array}$		

Question	Generic scheme	Illustrative scheme	Max mark
(b)	Method 1 - ${ }^{4}$ differentiate - 5 link with (a) and identify sign of $(x-2)^{2}$ - ${ }^{6}$ communicate reason	Method 1 - ${ }^{4}-6 x^{2}+24 x-25$ - $f^{\prime}(x)=-6(x-2)^{2}-1$ and $(x-2)^{2} \geq 0 \forall x$ - 6 eg $\therefore-6(x-2)^{2}-1<0 \forall x$ \Rightarrow always strictly decreasing	3
	Method 2 - ${ }^{4}$ differentiate -5 identify maximum value of $f^{\prime}(x)$ -6 communicate reason	Method 2 - ${ }^{4}-6 x^{2}+24 x-25$ - 'maximum value is -1 ' or annotated sketch including x-axis $\bullet^{6}-1<0$ or 'graph lies below x-axis' $\therefore f^{\prime}(x)<0 \forall x$ \Rightarrow always strictly decreasing	
Notes:			
3. In Method 1, do not penalise $(x-2)^{2}>0$ or the omission of $f^{\prime}(x)$ at \bullet^{5}. 4. In Method 1, accept $-6(x-2)^{2} \leq 0$ or $-6(x-2)^{2}<0$ at \bullet^{5}. 5. At \bullet^{5} communication must be explicitly in terms of the derivative of the given function. Do not accept statements such as '(something) ${ }^{2} \geq 0$ ', 'something squared ≥ 0 '. However, \bullet^{6} is still available.			
Commonly Observed Responses:			
Candidate G$\begin{aligned} & f^{\prime}(x)=-6 x^{2}+24 x-25 \\ & f^{\prime}(x)=-6(x-2)^{2}-1 \\ & -6(x-2)^{2}-1<0 \end{aligned}$$\Rightarrow \text { strictly decreasing }$			

Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)	Method 1 - ${ }^{1}$ equate composite function to x - ${ }^{2}$ write $f\left(f^{-1}(x)\right)$ in terms of $f^{-1}(x)$ -3 state inverse function	Method 1 - ${ }^{1} \quad f\left(f^{-1}(x)\right)=x$ - $2 \sqrt[3]{f^{-1}(x)}+8=x$ - ${ }^{3} f^{-1}(x)=(x-8)^{3}$	3
		Method 2 -1 write as $y=f(x)$ and start to rearrange -2 express x in terms of y -3 state inverse function	Method 2 $\cdot{ }^{1}$ $\begin{aligned} & y=f(x) \Rightarrow x=f^{-1}(y) \\ & y-8=\sqrt[3]{x} \end{aligned}$ - $2 x=(y-8)^{3}$ - $f^{-1}(y)=(y-8)^{3}$ $\Rightarrow f^{-1}(x)=(x-8)^{3}$	
Notes:				
1. In Method 2, accept ' $y-8=\sqrt[3]{x}$ ' without reference to $y=f(x) \Rightarrow x=f^{-1}(y)$ at 2. In Method 2 , accept $f^{-1}(x)=(x-8)^{3}$ without reference to $f^{-1}(y)$ at \bullet^{3}. 3. At \bullet^{3} stage, accept f^{-1} written in terms of any dummy variable eg $f^{-1}(y)=(y-8)^{3}$. 4. $y=(x-8)^{3}$ does not gain \bullet^{3}. 5. $f^{-1}(x)=(x-8)^{3}$ with no working gains $3 / 3$.				

Question	Generic scheme	Illustrative scheme	Max mark
Commonly Observed Responses:			
Candidate A - multiple expressions for $y=f(x)$$\begin{aligned} & f(x)=\sqrt[3]{x}+8 \\ & y=\sqrt[3]{x}+8 \\ & y-8=\sqrt[3]{x} \\ & x=(y-8)^{3} \\ & y=(x-8)^{3} \\ & f^{-1}(x)=(x-8)^{3} \quad \text { Award } 2 / 3 \end{aligned}$		Candidate B - multiple expressions for $y=f(x)$ $\begin{aligned} & f(x)=\sqrt[3]{x}+8 \\ & y=\sqrt[3]{x}+8 \\ & x=\sqrt[3]{y}+8 \\ & y=(x-8)^{3} \\ & f^{-1}(x)=(x-8)^{3} \end{aligned}$ Award 2/3	
Candidate C-BEWARE$f^{\prime}(x)=\ldots$		Candidate D $f^{-1}(x)=x-8^{3}$ with no working	Award 0/3
Candidate E $\begin{gathered} x \rightarrow \sqrt[3]{x} \rightarrow \sqrt[3]{x}+8=f(x) \\ \sqrt[3]{ } \rightarrow+8 \\ \therefore-8 \rightarrow()^{3} \\ (x-8)^{3} \\ f^{-1}(x)=(x-8)^{3} \end{gathered}$ $\bullet^{1} \downarrow$ awarded for knowing to perform inverse operations in reverse			
(b)	- ${ }^{4}$ state domain	- ${ }^{4} 9 \leq x \leq 18, x \in \mathbb{R}$	1
Notes:			
1. Do not penalise the omission of $x \in \mathbb{R}$.			
Commonly Observed Responses:			

Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)	\bullet identify initial power	$\bullet^{1} 120$	1
Notes:				

(b)	- ${ }^{2}$ interpret information -3 process equation - ${ }^{4}$ write in logarithmic form - ${ }^{5}$ process for t	-2 $102=120 e^{-0.0079 t}$ stated or implied by \bullet^{3} ${ }^{3} e^{-0.0079 t}=0.85$ -4 $\log _{e} 0 \cdot 85=-0.0079 t$ - ${ }^{5}$ 20.572...	4

Notes:

1. Candidates who interpret 15% incorrectly do not gain \bullet^{2}, but \bullet^{3}, \bullet^{4} and \bullet^{5} are still available. See Candidate E.
2. \bullet^{3} may be implied by $\bullet{ }^{4}$.
3. Any base may be used at \bullet^{4} stage. See Candidate A.
4. Accept $\ln 0 \cdot 85=-0.0079 t \ln e$ for \bullet^{4}.
5. Accept 20.57 or 20.6 at \bullet^{5}.
6. The calculation at ${ }^{5}$ must follow from the valid use of exponentials and logarithms at \bullet^{3} and $\bullet \bullet^{4}$.
7. For candidates who take an iterative approach to arrive at $t=20.6$ award 1/4.

However, if, in the iterations P_{t} is evaluated for $t=20 \cdot 55$ and $t=20 \cdot 65$ then award 4/4.

Commonly Observed Responses:	
Candidate A $\begin{aligned} & 102=120 e^{-0.0079 t} \\ & e^{-0.0079 t}=0 \cdot 85 \\ & \log _{10} 0 \cdot 85=-0 \cdot 0079 t \log _{10} e \\ & 20 \cdot 6 \end{aligned}$	Candidate B $\begin{array}{ll} 102=120 e^{-0.0079 t} & \bullet^{2} \checkmark \\ e^{-0.0079 t}=0 \cdot 85 & \bullet^{3} \checkmark \\ t=20 \cdot 6 & \bullet^{4} \wedge \bullet^{5} \downarrow 1 \end{array}$
Candidate C $\log _{e} 0.85=-0.0079 t$ $t=20 \cdot 6$ years $t=20$ years 6 months	Candidate D $\begin{array}{ll} \log _{e} 0 \cdot 85=-0.0079 t & \bullet^{4} \checkmark \\ t=20 \text { years } 6 \text { months } & \bullet^{5} x \end{array}$

Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)	- ${ }^{1}$ use -3 in synthetic division or in evaluation of quartic -2 complete division/evaluation and interpret result	.${ }^{1}$-3 3 10 1 -8 -6 or $3 \times(-3)^{4}+10 \times(-3)^{3}+(-3)^{2}$ $-8 \times(-3)-6$ Remainder $=0 \therefore(x+3)$ is a factor or $f(-3)=0 \therefore(x+3)$ is a factor	2
Not				

1. Communication at $\bullet{ }^{2}$ must be consistent with working at that stage ie a candidate's working must arrive legitimately at 0 before \bullet^{2} can be awarded.
2. Accept any of the following for \bullet^{2} :

- ' $f(-3)=0$ so $(x+3)$ is a factor'
- 'since remainder $=0$, it is a factor'
- the ' 0 ' from any method linked to the word 'factor' by 'so', 'hence', \therefore, \rightarrow, \Rightarrow etc.

3. Do not accept any of the following for \bullet^{2} :

- double underlining the ' 0 ' or boxing the ' 0 ' without comment
- ' $x=-3$ is a factor', '... is a root'
- the word 'factor' only, with no link.

Commonly Observed Responses:

Questi	Generic scheme	Illustrative scheme	Max mark
(b)	- ${ }^{3}$ identify cubic and attempt to factorise - ${ }^{4}$ find second factor - ${ }^{5}$ identify quadratic - ${ }^{6}$ evaluate discriminant - ${ }^{7}$ interpret discriminant and factorise fully	$\bullet^{3} \mathrm{eg} \quad$$\ldots$ 3 1 -2 -2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots leading to $(x-1)$ - $53 x^{2}+4 x+2$ - ${ }^{6}-8$ -7 since $-8<0$, quadratic has no (real) factors leading to $(x+3)(x-1)\left(3 x^{2}+4 x+2\right)$	5

Notes:

4. Candidates who arrive at $(x+3)(x-1)\left(3 x^{2}+4 x+2\right)$ by using algebraic long division or by inspection gain \bullet^{3}, ${ }^{4}$ and $\bullet{ }^{5}$.
5. Evidence for \bullet^{6} may appear in the quadratic formula.
6. Accept ' $-8<0$ so no real roots' with the fully factorised quartic for \bullet^{7} :
7. Do not accept any of the following for \bullet^{7} :

- $(x+3)(x-1)\left(3 x^{2}+4 x+2\right)$ does not factorise
- $(x+3)(x-1)(\ldots \ldots)(\ldots \ldots)$ cannot factorise further.

8. Accept $(x+3)(x-1) 3 x^{2}+4 x+2$, with a valid reason for \bullet^{7}.
9. Where the quadratic factor obtained at \bullet^{5} can be factorised, \bullet^{6} and \bullet^{7} are not available.

Commonly Observed Responses:

Candidate A

$$
\begin{array}{ll}
(x+3)(x-1)\left(3 x^{2}+4 x+2\right) & \bullet^{5} \checkmark \\
b^{2}-4 a c=16-24<0 & \cdot 6 \wedge \\
\text { so does not factorise } & \cdot 7,
\end{array}
$$

Candidate B

$(x+3)(x-1)\left(3 x^{2}+4 x+2\right)$
$b^{2}-4 a c<0$
so does not factorise

	uest	Generic scheme	Illustrative scheme	Max mark
11.	(a)	- ${ }^{1}$ express A in terms of x and h -2 express height in terms of x - ${ }^{3}$ substitute for h and complete proof	- ${ }^{1}(A=) 16 x^{2}+16 x h$ - $\quad h=\frac{2000}{8 x^{2}}$ - ${ }^{3} A=16 x^{2}+16 x \times \frac{2000}{8 x^{2}}$ leading to $A=16 x^{2}+\frac{4000}{x}$	3

Notes:

1. At \bullet^{1} accept any unsimplified form of $16 x^{2}+16 x h$.
2. The substitution for h at \bullet^{3} must be clearly shown for \bullet^{3} to be available.
3. For candidates who omit some of the surfaces of the box, only \bullet^{2} is available.

Commonly Observed Responses:

(b)	- ${ }^{4}$ express A in differentiable form - ${ }^{5}$ differentiate - ${ }^{6}$ equate expression for derivative to 0 ${ }^{-7}$ process for x - ${ }^{8}$ verify nature - ${ }^{9}$ evaluate A	- $416 x^{2}+4000 x^{-1}$.5 $32 x-4000 x^{-2}$ -6 $32 x-4000 x^{-2}=0$ ${ }^{-7} 5$ - 8 table of signs for a derivative (see below) \therefore minimum or $A^{\prime \prime}(x)=96>0 \Rightarrow$ minimum - $A=1200$ or min value $=1200$	6

Notes:

4. For a numerical approach award $0 / 6$.
5. \bullet^{6} can be awarded for $32 x=4000 x^{-2}$.
6. For candidates who integrate any term at the \bullet^{5} stage, only \bullet^{6} is available on follow through for setting their 'derivative' to 0 .
7. \bullet^{7}, \bullet^{8} and \bullet are only available for working with a derivative which contains an index ≤-2.
8. $\sqrt[3]{\frac{4000}{32}}$ must be simplified at \bullet^{7} or \bullet^{8} for \bullet^{7} to be awarded.
9. \bullet^{8} is not available to candidates who consider a value of $x \leq 0$ in the neighbourhood of 5 .
10. \bullet^{9} is still available in cases where a candidate's table of signs does not lead legitimately to a minimum at \bullet^{8}.
11. \bullet^{8} and \bullet^{9} are not available to candidates who state that the minimum exists at a negative value of x. See Candidates C and D .

For the table of signs for a derivative, accept:

x	5^{-}	5	5^{+}
$A^{\prime}(x)$	-	0	+
Shape or slope			-

x	\rightarrow	5	\rightarrow
$A^{\prime}(x)$	-	0	+
Shape			
or	\searrow	-	$/$
slope			

Arrows are taken to mean 'in the neighbourhood of'

x	a	5	b
$A^{\prime}(x)$	-	0	+
Shape or slope	\searrow	-	$/$

Where $0<a<5$ and $b>5$

- For this question do not penalise the omission of ' x ' or the word 'shape'/'slope'.
- Stating values of $A^{\prime}(x)$ in the table is an acceptable alternative to writing ' + ' or '-' signs. Values must be checked for accuracy.
- The only acceptable variations of $A^{\prime}(x)$ are: $A^{\prime}, \frac{d A}{d x}$ and $32 x-4000 x^{-2}$.

Commonly Observed Responses:

Candidate A - differentiating over multiple lines

$$
\bullet^{4} \wedge
$$

$A^{\prime}(x)=32 x+4000 x^{-1}$
$A^{\prime}(x)=32 x-4000 x^{-2}$
$.{ }^{5} \times$
$32 x-4000 x^{-2}=0$

Candidate C - only considers 5

$A=16 x^{2}+4000 x^{-1}$				
$A^{\prime}=32 x-4000 x^{-2}=0$				
$x= \pm 5$				
x	\rightarrow	5	\rightarrow	
	-	0		
A^{\prime}				
\therefore minimum				
$A=1200$ or min			in	

Candidate B - differentiating over multiple lines
$A=16 x^{2}+4000 x^{-1}$
$A^{\prime}(x)=32 x+4000 x^{-1}$
$A^{\prime}(x)=32 x-4000 x^{-2}$
.${ }^{5} x$
$32 x-4000 x^{-2}=0$
-6 $\quad \checkmark 1$
Candidate \mathbf{D} - considers 5 and negative 5 in separate tables

	x^{2}	400	
$A^{\prime}=$	$2 x$		
$x=$			
x	\rightarrow	5	-
		0	
A^{\prime}	\rangle		

\therefore minimum when $x=5$
$A=1200$ or min value $=1200$

Ignore incorrect working in second table

	Generic scheme	Illustrative scheme	Max mark
12.	Method 1 - ${ }^{1}$ state linear equation -2 introduce logs - ${ }^{3}$ use laws of logs - ${ }^{4}$ use laws of logs - ${ }^{5}$ state a and b	Method 1 -1 $\log _{4} y=3 x-1$ $\bullet \log _{4} y=3 x \log _{4} 4-\log _{4} 4$ - $\log _{4} y=\log _{4} 4^{3 x}-\log _{4} 4$ - ${ }^{4} \log _{4} y=\log _{4}\left(\frac{4^{3 x}}{4}\right)$ or $\log _{4} y=\log _{4} 4^{-1} 4^{3 x}$ - ${ }^{5} a=\frac{1}{4}, b=64$	5
	Method 2 - ${ }^{1}$ state linear equation -2 convert to exponential form - ${ }^{3}$ use laws of indices - ${ }^{4}$ state a - ${ }^{5}$ state b	Method 2 - ${ }^{1} \log _{4} y=3 x-1$ - ${ }^{2} y=4^{3 x-1}$ -3 $y=4^{-1} 4^{3 x}$ - $4 \quad a=\frac{1}{4}$ ${ }^{5} b=64$	5
	Method 3 - ${ }^{1}$ introduce logs to $y=a b^{x}$ - ${ }^{2}$ use laws of logs - ${ }^{3}$ interpret intercept - ${ }^{4}$ interpret gradient -5 state a and b	Method 3 The equations at $\bullet^{1}, \bullet^{2}, \bullet^{3}$ and \bullet^{4} must be stated explicitly. - $\log _{4} y=\log _{4} a b^{x}$ - ${ }^{2} \log _{4} y=\log _{4} a+x \log _{4} b$ - ${ }^{3}-1=\log _{4} a$ - $43=\log _{4} b$ - $\quad a=\frac{1}{4}, b=64$	5

Question	Generic scheme	Illustrative scheme	Max mark
	Method 4 -1 interpret point on log graph -2 convert from log to exponential form -3 interpret point and convert -4 substitute into $y=a b^{x}$ and evaluate a - 5 substitute other point into $y=a b^{x}$ and evaluate b	Method 4 -1 $x=3$ and $\log _{4} y=8$ - $2 x=3$ and $y=4^{8}$ - ${ }^{3} x=0$ and $\log _{4} y=-1$ $x=0$ and $y=4^{-1}$ - ${ }^{4} 4^{-1}=a b^{0} \Rightarrow a=\frac{1}{4}$ - ${ }^{5} 4^{8}=\frac{1}{4} b^{3} \Rightarrow b=64$	5
Notes:			
1. In any method, marks may only be awarded within a valid strategy using $y=a b^{x}$. 2. Accept $y=\frac{1}{4} \cdot 64^{x}$ for \bullet^{5}. 3. Markers must identify the method which best matches the candidates approach; they must not mix and match between methods. 4. Penalise the omission of base 4 at most once in any method. 5. Do not accept $a=4^{-1}$.			
Commonly Observed Responses:			

Question		Generic scheme	Illustrative scheme	Max mark
13.		-1 interpret information given -2 integrate any two terms - ${ }^{3}$ complete integration - ${ }^{4}$ interpret information given and substitute - ${ }^{5}$ process for c and state expression for $f(x)$	- $f^{\prime}(x)=3 x^{2}-16 x+11$ or $f(x)=\int\left(3 x^{2}-16 x+11\right) d x$ - 2 eg $\frac{3 x^{3}}{3}-\frac{16 x^{2}}{2} \ldots$ ${ }^{-3} \quad \ldots+11 x+c$ - ${ }^{4} 0=7^{3}-8 \times 7^{2}+11 \times 7+c$ - $5 f(x)=x^{3}-8 x^{2}+11 x-28$	5

1. For candidates who make no attempt to integrate to find $f(x)$ award $0 / 5$.
2. Do not penalise the omission of $f(x)$ or $d x$ or the appearance of $+c$ at $\bullet{ }^{1}$.
3. If any two terms have been integrated correctly \bullet^{1} may be implied by \bullet^{2}.
4. For candidates who omit $+c$, only $\bullet{ }^{1}$ and $\bullet{ }^{2}$ are available.
5. For candidates who differentiate any term, $\bullet^{3} \bullet^{4}$ and \bullet^{5} are not available.
6. Candidates must attempt to integrate both terms containing x for \bullet^{4} and \bullet^{5} to be available. See Candidate B.
7. Accept $y=x^{3}-8 x^{2}+11 x-28$ at \bullet^{5} since $y=f(x)$ is defined in the question.
8. Candidates must simplify coefficients in their final line of working for the last mark available in that line of working to be awarded.

Commonly Observed Responses:

Candidate A - incomplete substitution
$\begin{array}{ll}f(x)=x^{3}-8 x^{2}+11 x+c & \bullet^{1} \checkmark \bullet^{2} \checkmark \bullet^{3} \checkmark \\ f(x)=7^{3}-8 \times 7^{2}+11 \times 7+c & \bullet^{4} \wedge \\ c=-28 & \\ f(x)=x^{3}-8 x^{2}+11 x-28 & \bullet \square 1\end{array}$

Candidate B - partial integration
$\begin{array}{ll}f(x)=x^{3}-8 x^{2}+11+c & \bullet \checkmark \bullet^{2} \checkmark \bullet^{3} \times \\ 0=7^{3}-8 \times 7^{2}+11+c & \bullet \boxed{ } 1 \\ c=38 & \\ f(x)=x^{3}-8 x^{2}+49 & \bullet \boxed{5}\end{array}$

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
15.	(a)	-1 find gradient of radius ${ }^{2}$ state gradient of tangent - ${ }^{3}$ state equation of tangent	- $1-\frac{1}{3}$ $\cdot{ }^{2} 3$ - ${ }^{3} y=3 x-2$	3

Notes:

1. Do not accept $y=\frac{3}{1} x-2$ for \bullet^{3}.
2. \bullet^{3} is only available as a consequence of trying to find and use a perpendicular gradient.
3. At \bullet^{3} accept, $y-3 x+2=0$ or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

	(b)	(i)	\bullet^{4} find coordinates of T	$\bullet^{4}(0,-2)$	$\mathbf{1}$
	(ii)	\bullet^{5} find midpoint CT \bullet^{6} find radius of circle with diameter CT \bullet^{7} state equation of circle	$\bullet^{5}(4,5)$	$\mathbf{\bullet}$	

Notes:

4. Answers in part (b)(i) must be consistent with answers from part (a).
5. Accept $x=0, y=-2$ for \bullet^{4}.
6. $(x-4)^{2}+(y-5)^{2}=(\sqrt{65})^{2}$ does not gain \bullet^{7}.
7. \bullet^{7} is not available to candidates who use a line other than CT as the diameter of the circle.

Commonly Observed Responses:

