2015 Mathematics

Intermediate 1 Units 1, 2 and 3 Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA’s NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part Two: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 and 3 Paper 1

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet’ point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions.

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working’.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols \checkmark and \times are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$, indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

Part Three: Mathematics Intermediate 1: Units 1, 2 and 3 Paper 1,

Question		Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Additional Guidance
1	a	Ans: $\mathbf{1 . 1 8 4}$ - ${ }^{1}$ calculate $1.564-0.38$: 1.184	1	
1	b	Ans: 21980 - ${ }^{1} \quad$ calculate $3.14 \times 7000: 21980$	1	
1	c	Ans: 70 - ${ }^{1}$ calculate $5 / 6$ of $84: 70$	1	
2		Ans: $3 / 8$ - ${ }^{1}$ find probability: ${ }^{9} / 24$ - ${ }^{2}$ simplify fraction: $3 / 8$	2	1. Correct answer without working award $2 / 2$ 2. $3 / 5$ (no working necessary) award $1 / 2 \times \checkmark$ 3. Final answer must be a fraction $9: 24,3: 8,9$ out of 24,3 out of 8 , 9 in 24,3 in $8,9-24,3-8,0 \cdot 375,37 \cdot 5 \%$ award $1 / 2 \checkmark x$
3		Ans: $39^{\circ} \mathrm{C}$ - ${ }^{1}$ correct method: 16 -(-23) -2 correct answer: 39	2	1. Correct answer without working award 2/2 2. For $-39^{\circ} \mathrm{C}$ award $1 / 2$ 3. Accept number line from -23 to 16 as evidence of correct method award $1 / 2$

Question		Expected Answer/s	Max Mark	Additional Guidance
6		Ans: 9 - ${ }^{1}$ calculate $-5+2$ correctly: -3 - ${ }^{2}$ know how to square $(g+2)$: -3×-3 - ${ }^{3}$ square $(g+2)$ correctly: 9	3	1. Correct answer without working award 0/3 2. Final mark only available for squaring a negative number. 3. Answers acceptable for partial credit (valid working must be shown) (i) $-5+2^{2}=-5+4=-1$ award $1 / 3$ (ii) $-7^{2}=-49$ award $1 / 3 \times \checkmark \times$ (iii) $-3^{2}=-9$ award $2 / 3 \checkmark \checkmark x$ (iv) $(-5+2)^{2}=7^{2}=49$ award $0 / 3$
7	a	Ans: 25 litres - ${ }^{1} \quad$ state mode: 25	1	
7	b	Ans: $\begin{array}{r}390 \\ \underline{\mathbf{2 4 5}} \\ \underline{1645} \\ \hline\end{array}$ - ${ }^{1}$ complete table: 390 $\begin{array}{r} 245 \\ \underline{1645} \\ \hline \end{array}$	1	
7	c	Ans: $23 \cdot 5$ litres - ${ }^{1}$ know to divide $\Sigma \mathrm{fx}$ by 70 : $1645 \div 70$ - ${ }^{2} \quad$ correctly divide $\Sigma \mathrm{fx}$ by 70 : $1645 \div 70=23 \cdot 5$	2	1. Correct answer without working subsequent to part (a) award $2 / 2$ 2. $1^{\text {st }}$ mark may only be awarded for attempting $\sum \mathrm{fx} \div 70$ 3. Award $0 / 2$ for eg $1645 \div 5=329,70 \div 7=10$ 4. Accept $\Sigma \mathrm{fx} \div 10 \times 7$ as evidence of knowing to divide $\Sigma \mathrm{fx}$ by 70

	Expected Answer/s	Max Mark	Additional Guidance
8	Ans: $a=16$ - ${ }^{1}$ start to collect like terms: $\pm 2 a \text { or } \pm 32$ - ${ }^{2}$ collect like terms and equate: $2 a=32 \text { or }-2 a=-32$ $\bullet^{3} \quad$ solve equation for a : $a=16$	3	1. For answers without valid working award $1 / 3$ eg (i) $a=16$ without working (ii) $16+42=3 \times 16+10 \rightarrow a=16$ 2. For the award of the third mark an answer of the form $a=$ is required Special case : accept $16=\mathrm{a}$ 3. Answers acceptable for partial credit (valid working must be shown) eg (i) $2 a=32 \rightarrow 16$ (ii) $2 a=52 \rightarrow a=26$ (iii) $4 a=32 \rightarrow a=8$ (iv) $4 a=52 \rightarrow a=13$
9	Ans: £222.3(0) - ${ }^{1}$ find basic premium: $26 \times 9=234$ - ${ }^{2}$ find discount: $234 \div 10 \div 2=11 \cdot 70$ -3 find net premium: $234-11 \cdot 70=222 \cdot 30$	3	1. Correct answer without working 2. Alternate Strategy - ${ }^{1}$ find discount $26 \div 10 \div 2=1 \cdot 30$ \bullet^{2} find net: $26-1 \cdot 30=24 \cdot 70$ ${ }^{3}$ find premium $24 \cdot 70 \times 9=222 \cdot 30$ or - ${ }^{1}$ find discount $26 \div 10 \div 2=1 \cdot 30$ ${ }^{-2}$ find total discount $1 \cdot 30 \times 9=11 \cdot 70$ ${ }^{3}$ find premium $26 \times 9-11 \cdot 70=222 \cdot 30$
10	Ans: 0.3 - ${ }^{1}$ find $\sqrt{ } t$ correctly: $\sqrt{ } 16=4$ - ${ }^{2}$ know to divide 120 by $100 \times \sqrt{ } 16$: $120 \div(100 \times 4)$ -3 multiply and divide correctly: $0 \cdot 3$	3	1. Correct answer without working award 3/3 2. Accept ${ }^{3} / 10$ award $3 / 3$ 3. (a) $(120 \div 100) \times \sqrt{ } 16=4 \cdot 8$ award $2 / 3 \checkmark \times \checkmark$ (b) $120 \div(100 \times 8)=0.15$ award $2 / 3 \times \checkmark \checkmark$ (c) $12 / 40$ award $2 / 3 \checkmark \checkmark x$ (d) $120 / 400$ award $1 / 3 \checkmark \times x$ (e) ${ }^{12} /(10 \vee 16)$ award $1 / 3 \times \checkmark x$ (f) ${ }^{120} /(100 \vee 16)$ award $0 / 3$ (g) $120 \div 100=1 \cdot 2$ award $0 / 3$

TOTAL MARKS FOR PAPER 1

2015 Mathematics

Intermediate 1 Units 1, 2 and 3 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA’s NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part Two: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 and 3 Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet' point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working’.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols \checkmark and \times are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$, indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

Part Three: Mathematics Intermediate 1: Units 1, 2 and 3 Paper 2

	Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
1	Ans: 1.5 g - ${ }^{1}$ find number of grams per ml : $0.6 \div 100=0.006$ - ${ }^{2}$ find number of grams in 250 ml : $0 \cdot 006 \times 250=1.5$	2	1. Correct answer without working award 2/2 2. Alternative strategies (a) \bullet^{1} find scale factor: $250 \div 100=2 \cdot 5$ - ${ }^{2}$ find number of grams in 250 ml : $2 \cdot 5 \times 0 \cdot 6=1 \cdot 5$ (b) ${ }^{1} \quad 250 \div(100 \div 0 \cdot 6)$ - 1.5 [$100 \div 0.6$ is not enough for the $1^{\text {st }}$ mark] 3. Common answer $0 \cdot 6 \times 250=150 g$
2	Ans: 9.7×10^{8} - ${ }^{1}$ correct coefficient: $9 \cdot 7$ $\bullet^{2} \quad$ correct power of ten: 9.7×10^{8}	2	1. The second mark can be awarded for a consistent power of ten eg 97×10^{7}
3	Ans: $\quad \boldsymbol{m}<9$ - ${ }^{1}$ collect constants: $7 m<63$ -2 \quad solve inequality for $m: m<9$	2	1. For answers without valid working award $1 / 2$ eg (a) $m<9$ without working $\quad x \checkmark$ (b) $7 \times 9+5<68 \rightarrow m<9 \quad x \checkmark$ (c) $7 \mathrm{~m}=63 \rightarrow \mathrm{~m}<9$ 2. Answers acceptable for partial credit (valid working must be shown) award $1 / 2$ (a) $7 m<63 \rightarrow<9$ $\sqrt{ } x$ (b) $7 m<63 \rightarrow m=9$ (c) $7 m=63 \rightarrow m=9$ (d) $7 m<73 \rightarrow m<10 \cdot 4(28 \ldots) \times \checkmark$

Question		Expected Answer/s	Max Mark	Additional Guidance
4		Ans: 0610 or $\mathbf{6} \cdot 10 \mathrm{am}$ (on Tuesday) - ${ }^{1}$ correct method: $0945+13 h 25 m+7 h$ - ${ }^{2}$ correct answer: 0610 or $6 \cdot 10 \mathrm{am}$	2	1. Correct answer without working award 2/2 2. Accept $6 \cdot 10$ 3. (a) $6 \cdot 10 \mathrm{pm}$ or 1810 award $1 / 2$ (b) 3010 or 2970 award $1 / 2$ (c) $0945+13 \mathrm{~h}+7 \mathrm{~h}=0545$ (d) $0945+13 \mathrm{~h} 25 \mathrm{~m}-7 \mathrm{~h}=1610 / 4 \cdot 10 \mathrm{pm}$ award 1/2 (e) $0945+13 \mathrm{~h} 25$ mins $=2310$ award 0/2
5	a	Ans: line of best fit drawn - ${ }^{1}$ draw line of best fit:	1	```1. Accept straight lines with \(-{ }^{5.8} / 1000 \leq\) gradient \(\leq-7.7 / 1000\) and \(\mid(\) points above line \()-(\) points below line \() \mid \leq 2\)```
5	b	Ans: consistent with line of best fit -1 consistent with line of best fit:	1	1. You may have to extend candidate's line to check answer

Question		Expected Answer/s	Max Mark	Additional Guidance
6	a	Ans: $14 u+47$ -1 multiply out first bracket: $20 u+44$ -2 multiply out second bracket: $3-6 u$ - ${ }^{3}$ collect like terms: $14 u+47$	3	1. Correct answer without working award $3 / 3$ 2. Special case: only first term in each bracket is multiplied (working must be shown) $20 u+11+3-2 u=18 u+14$ award $2 / 3$ 3. Some common answers (valid working must be shown) (a) $26 u+47$ award $2 / 3 \checkmark \checkmark x$ (b) $20 u+44+3-2 u \quad$ award $1 / 3 \checkmark \times x$ (c) 3rd mark is not available if there is invalid subsequent working eg $14 u+47 \rightarrow 61 u \quad$ award $2 / 3$ $14 u+47 \rightarrow 47 / 14 \quad$ award $2 / 3$
6	b	Ans: 6(2w+3) - ${ }^{1}$ identify common factor: 6 or $2 w+3$ - ${ }^{2}$ factorise: $6(2 w+3)$	2	1. eg $2(6 w+9), 3(4 w+6), 12(w+1 \cdot 5)$ award $1 / 2$

Question		Expected Answer/s	Max Mark	Additional Guidance
7	a	Ans: 30 minutes - ${ }^{1}$ interpret graph: 30 minutes or equivalent	1	
7	b	Ans: 48 mph - ${ }^{1}$ know how to find speed: $\mathrm{S}=\mathrm{D} / \mathrm{T}$ -2 interpret graph: $\mathrm{D}=180, \mathrm{~T}=3 \mathrm{~h} 45 \mathrm{~m}$ ${ }^{3} \quad$ find speed: $180 \div 3 \cdot 75=48$	3	1. Correct answer without working award 3/3 2. Some common answers (working must be shown, rounding or truncation is acceptable) (a) $180 \div 225=0.8 \mathrm{miles} /$ minute award $3 / 3$ (b) $180 \div 225=0 \cdot 8 \quad$ award $2 / 3 \checkmark \checkmark x$ (c) $180 \div 3 \cdot 45=52(\cdot 1 \ldots)$ award $2 / 3 \checkmark \checkmark x$ (d) $180 \times 3 \cdot 75=675$ award $2 / 3 \times \checkmark \checkmark$ (e) $180 \times 3 \cdot 45=621$ award $1 / 3 \times \checkmark x$ (f) $180 \times 225=40500$ award $1 / 3 \times \checkmark x$ 3. Where time is only given in decimal form then $3^{\text {rd }}$ mark is only available for division (or multiplication) by: $3 \cdot 75,5 \cdot 75$ (total journey time) or $1 \cdot 75$ (time from Dumfries to Glasgow). eg $260 \div 5 \cdot 75=45(\cdot 2 \ldots) \checkmark \times \checkmark$ $80 \times 1.75=140 \quad \times x \checkmark$ 4. $3^{\text {rd }}$ mark is not available for division by a whole number.

	sti	Expected Answer/s			Max Mark	Additional Guidance		
8		Ans:			3			
		T-shirt $£ 12$	Signed Photograph $£ 8$	Baseball Cap £6		¢ter	Fluorescent Stick £2	$\underset{£}{\text { Total Cost }}$
			\checkmark			\checkmark	\checkmark	15
			\checkmark	\checkmark			\checkmark	16
			\checkmark	\checkmark		\checkmark		19
		\checkmark				\checkmark	\checkmark	19
		\checkmark		\checkmark			\checkmark	20
		- ${ }^{1}$ one correct row: - ${ }^{2}$ two more correct rows: - ${ }^{3}$ final two correct rows:			1. Where there are missing totals a maximum of 2 marks is available (a) 5 rows otherwise "correct" award $2 / 3$ (b) 2 rows otherwise "correct" award $1 / 3$			
9	a	Ans: 59 - ${ }^{1}$ order numbers: $\begin{array}{llll} 37 & 39 & 42 & 48 \\ 61 & 64 & 72 & 73 \\ 81 \end{array}$ - ${ }^{2}$ find median: 59			2	1. Correct answer without working award $2 / 2$ 2. 77 [numbers not ordered] award $1 / 2$ 3. If 'correct' median is found from ordered list with one missing or one extra number award 1/2		
9	b	Ans: 44 - ${ }^{1}$ find range: $81-37=44$			1			
9	c	Ans: On average Lido shoppers spent less. Lido shoppers' spending varied more. - ${ }^{1}$ interpret statistics: Lido was less - ${ }^{2}$ interpret statistics: Lido varied more			2	1. Answer must be consistent with answers to parts (a) and (b) 2. Do not accept eg Lido has a smaller median Lido has a larger range		

	Expected Answer/s	Max Mark	Additional Guidance
10	Ans: 264 cm - ${ }^{1}$ correct form of Pythagoras’ Theorem: $27^{2}+19^{2}$ - ${ }^{2} \quad$ calculate sum (or difference) of two squares: 1090 - calculate the square root of a calculated value: 33 (•0151...) -4 calculate length: $8 \times 33(\cdot 0151 \ldots)=264(\cdot 1211 \ldots)$	4	1. Correct answer without working award 4/4 2. A common answer (working must be shown) $\sqrt{ }\left(27^{2}-19^{2}\right)=19(\cdot 18 \ldots) \rightarrow 19 \times 8=152$ [or $19 \cdot 18 \ldots \times 8=153 \cdot 46 \ldots$.] award 3/4 $\times \checkmark \checkmark \checkmark$ 3. Final mark is not available if there is invalid subsequent working. 4. Alternate strategy - ${ }^{1} 27 \times 8=216$ and $19 \times 8=152$ ${ }^{2}{ }^{2}$ correct form of Pythagoras' Theorem $216^{2}+152^{2}$ - calculate sum (or difference) of two squares: 69760 - ${ }^{4}$ calculate the square root of a calculated value: 264(•1211..) 5. Note $4^{\text {th }}$ mark available for correctly calculating $8 \times$ previously calculated value.
11	Ans: 468 swiss francs - ${ }^{1}$ convert $€ 1500$ into pounds: $1500 \div 1 \cdot 25=1200$ - ${ }^{2}$ subtract 875 from answer to above: $1200-875=325$ - ${ }^{3}$ convert answer to above into Swiss francs: $325 \times 1 \cdot 44=468$	3	1. Correct answer without working award 3/3 2. Some common answers (working must be shown) (a) $694 \cdot 44[(1500 \times 1 \cdot 25-875) \div 1 \cdot 44]$ award 2/3 (b) $1440[(1500 \times 1 \cdot 25-875) \times 1 \cdot 44]$ award 2/3 (c) $1728[(1500 \div 1.25) \times 1.44]$ award 2/3 (d) $1000[1500 \times 1 \cdot 25-875]$ award $1 / 3$ (e) $900[(1500-875) \times 1 \cdot 44]$ award $1 / 3$ (f) $1260[875 \times 1 \cdot 44] \quad$ award $1 / 3$ (g) $2160[1500 \times 1 \cdot 44]$ award 0/3

	Expected Answer/s	Max Mark	Additional Guidance
12	Ans: 8 cm - ${ }^{1}$ use correct cosine ratio: $\cos 55^{\circ}=\mathrm{r} / 7$ - ${ }^{2}$ know how to solve equation: $r=7 \cos 55^{\circ}$ - ${ }^{3}$ carry out trigonometric calculation: 4(•015...) - ${ }^{4}$ find diameter: $2 \times 4(\cdot 015 \ldots)=8(\cdot 03 \ldots)$	4	1. Correct answer without working award 0/4 2. Do not penalize inadvertent use of radians or grads 0•3(097...) (radian used) award 4/4 9(.092...) (grads used) award 4/4 3. Where an incorrect trig ratio is used, working should be followed through with the possibility of awarding $3 / 4$. (a) $11(\cdot 46 \ldots)\left[2 \times 7 \sin 55^{\circ}\right]$ award $3 / 4 \times \checkmark \checkmark \checkmark$ (b) $20,19 \cdot 9(94 \ldots)\left[2 \times 7 \tan 55^{\circ}\right]$ award $3 / 4 \times \checkmark \checkmark \checkmark$ 4. In awarding the $4^{\text {th }}$ mark, the trig. ratio should not be rounded to any less than 2 decimal places, eg (a) $2 \times 7 \cos 55^{\circ}=14 \times 0.57=7.98$ award 4/4 (b) $2 \times 7 \cos 55^{\circ}=14 \times 0 \cdot 6=8 \cdot 4$ award $3 / 4 \checkmark \checkmark \checkmark x$ 5. Do not award the $4^{\text {th }}$ mark if there is invalid subsequent working eg $2 \times 7 \cos 55^{\circ}=8 \rightarrow \sqrt{ } 8=2 \cdot 8$ award $3 / 4 \checkmark \checkmark \checkmark x$

Que	Expected Answer/s	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
15	Ans: $548 \mathbf{m}^{2}$ - ${ }^{1}$ know how to calculate area of semi-circle: $1 / 2 \pi r^{2}$ - ${ }^{2}$ substitute correct radius into formula: $1 / 2 \times \pi \times 14^{2}$ - ${ }^{3}$ know to add area of rectangle to previously calculated value: previously calculated value $+20 \times 12$ -4 carry out all calculations correctly: $307 \cdot 876 \ldots+240=547 \cdot 876 \ldots$ $\left[1 / 2 \times 3 \cdot 14 \times 14^{2}=307 \cdot 72\right]$ (must include a circle calculation followed by an addition or subtraction) - 5 round to nearest whole number: 548	5	1. Correct answer without working award 0/5 2. Where no formula is stated accept (a) $1 / 2 \times \pi \times 14^{2}$ or 308 or $307 \cdot 876 \ldots$. as evidence of $1 / 2 \pi r^{2}$ being used (b) $1 / 2 \times \pi \times 28$ or 44 or $43 \cdot 98 \ldots$ as evidence of $1 / 2 \pi d$ being used 3. Some common answers (working must be shown) (a) 856 or $855\left[\pi \times 14^{2}+240\right]$ award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$ (b) $360\left[1 / 2 \times \pi \times 14^{2}+4+12+20+12+4\right]$ award $4 / 5 \checkmark \checkmark \times \checkmark \checkmark$ (c) 1472 or 1471 $\left[1 / 2 \times \pi \times 28^{2}+240\right]$ $\text { award } 4 / 5 \times \checkmark \checkmark \checkmark \checkmark$ or $\checkmark \times \checkmark \checkmark \checkmark$ (d) $284[1 / 2 \times \pi \times 28+240]$ award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$ (e) $262[1 / 2 \times \pi \times 14+240]$ award $3 / 5 \times \times \checkmark \checkmark \checkmark$ (f) $308 \quad\left[1 / 2 \times \pi \times 14^{2}\right]$ award $3 / 5 \checkmark \checkmark \times \times \checkmark$ (g) 616 or $615\left[\pi \times 14^{2}\right]$ award 2/5 $\times \checkmark \times \times \checkmark$ (h) $44 \quad[1 / 2 \times \pi \times 28]$ award 2/5 $\times \checkmark \times \times \checkmark$ (i) $88[\pi \times 28]$ award $2 / 5 \times \checkmark \times \times \checkmark$ 4. (a) $5^{\text {th }}$ mark is only available where the answer to circle calculation requires rounding. (b) Where premature rounding leads to incorrect answer, a maximum of $4 / 5$ is available.

TOTAL MARKS FOR PAPER 2

2015 Mathematics

Intermediate 1 Units 1, 2 and Applications Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part Two: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 and Applications Paper 1

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet' point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions.

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working'.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols \checkmark and \times are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$ ', indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

Part Three: Mathematics Intermediate 1: Units 1, 2 and Applications Paper 1

Question		Expected Answer/s	Max Mark	Additional Guidance
1	a	Ans: 1.184 - ${ }^{1}$ calculate $1.564-0.38$: 1.184	1	
1	b	Ans: 21980 - ${ }^{1}$ calculate $3.14 \times 7000: 21980$	1	
1	c	Ans: 70 - ${ }^{1}$ calculate $\frac{5}{6}$ of 84: 70	1	
2		Ans: $3 / 8$ - ${ }^{1}$ find probability: $9 / 24$ -2 \quad simplify fraction: $3 / 8$	2	1. Correct answer without working award $2 / 2$ 2. 3/5 (no working necessary) award $1 / 2 \times \checkmark$ 3. Final answer must be a fraction $9: 24,3: 8,9$ out of 24,3 out of 8 , 9 in 24,3 in $8,9-24,3-8,0 \cdot 375,37 \cdot 5 \%$ award $1 / 2 \checkmark x$
3		Ans: $39^{\circ} \mathrm{C}$ -1 correct method: 16 - (-23) -2 correct answer: 39	2	1. Correct answer without working 2. For $30^{\circ} \mathrm{C} \quad$ award $2 / 2$ 2. For $-39^{\circ} \mathrm{C}$ award $1 / 2$ 3. Accept number line from -23 to 16 as evidence of correct method award $1 / 2$

Question		Expected Answer/s	Max Mark	Additional Guidance
4	a	Ans: 66 - ${ }^{1}$ evaluate formula: 66	1	
4	b	Ans: =AVERAGE(F3..F7) - ${ }^{1}$ state formula: AVERAGE(F3..F7) or equivalent	1	1. Accept any punctuation mark or space between F3 and F7 2. Accept abbreviations for AVERAGE eg AV(F3..F7) 3. Accept (F3+F4+F5+F6+F7)/5 or SUM(F3..F7)/5 [must be / not \div]
5		Ans: 27 minutes - ${ }^{1}$ find volume: $6 \times 6 \times 6=216$ - ${ }^{2}$ know how to find time: volume $\div 8$ - ${ }^{3}$ correctly divide by 8 : (volume) $\div 8=27$	3	1. Correct answer without working award 3/3
6		Ans: 9 - ${ }^{1}$ calculate $-5+2$ correctly: -3 - ${ }^{2}$ know how to square $(g+2)$: -3×-3 -3 square $(g+2)$ correctly: 9	3	1. Correct answer without working award $0 / 3$ 2. Final mark only available for squaring a negative number. 3. Answers acceptable for partial credit (valid working must be shown) (i) $-5+2^{2}=-5+4=-1$ award $1 / 3$ (ii) $-7^{2}=-49$ award $1 / 3 \times \checkmark \times$ (iii) $-3^{2}=-9$ award $2 / 3 \checkmark \checkmark x$ (iv) $(-5+2)^{2}=7^{2}=49$ award $0 / 3$

	sti	Expected Answer/s	Max Mark	Additional Guidance
7	a	Ans: 25 litres - ${ }^{1} \quad$ state mode: 25	1	
7	b	Ans: $\begin{array}{r}390 \\ \underline{\mathbf{2 4 5}} \\ \underline{1645}\end{array}$ - ${ }^{1}$ complete table: 390 $\begin{array}{r} \underline{245} \\ \underline{1645} \end{array}$	1	
7	c	Ans: $23 \cdot 5$ litres - ${ }^{1} \quad$ know to divide $\Sigma \mathrm{fx}$ by 70 : $1645 \div 70$ - ${ }^{2} \quad$ correctly divide $\Sigma \mathrm{fx}$ by 70 : $1645 \div 70=23 \cdot 5$	2	1. Correct answer without working subsequent to part (a) award 2/2 2. $1^{\text {st }}$ mark may only be awarded for attempting $\sum \mathrm{fx} \div 70$ 3. Award $0 / 2$ for eg $1645 \div 5=329,70 \div 7=10$ 4. Accept $\Sigma \mathrm{fx} \div 10 \times 7$ as evidence of knowing to divide $\Sigma \mathrm{fx}$ by 70

Question		Expected Answer/s Ans: 360 km - ${ }^{1}$ find distance: $9 \times 40=360$	Max Mark 1	Additional Guidance				
10	a							
10	b	Ans: Bearings 150° from Pelham, 240 from Ridgeway and point of intersection shown -1 interpret/communicate: one bearing shown correctly ($\pm 2^{\circ}$) -2 interpret/communicate: second bearing shown correctly ($\pm 2^{\circ}$) - 3 strategy/process: find point of intersection of two bearings	3	1. Diagram below shows the acceptable limits for the position of the aeroplane 2. If the bearings are not drawn on the diagram: (i) aeroplane in correct position award $3 / 3$ (ii) aeroplane on correct bearing from either A or B award 1/3 3. Where two incorrect lines are drawn the $3^{\text {rd }}$ mark is only available if one line originates at Pelham and the other originates at Ridgeway				

TOTAL MARKS FOR PAPER 1

[END OF MARKING INSTRUCTIONS]

2015 Mathematics

Intermediate 1 Units 1, 2 and Applications Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part Two: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 and Applications Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet’ point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working’.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols \checkmark and \times are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$, indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

Part Three: Mathematics Intermediate 1: Units 1, 2 and Applications Paper 2

Question		Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
1		Ans: 1.5 g - ${ }^{1}$ find number of grams per ml: $0.6 \div 100=0.006$ - ${ }^{2}$ find number of grams in 250 ml : $0.006 \times 250=1.5$	2	1. Correct answer without working award 2/2 2. Alternative strategies (a) ${ }^{1}$ find scale factor: $250 \div 100=2.5$ - ${ }^{2}$ find number of grams in 250 ml : $2.5 \times 0.6=1.5$ (b) $\bullet^{1} 250 \div(100 \div 0 \cdot 6)$ ${ }^{-2} 1 \cdot 5$ [100 $\div 0.6$ is not enough for the $1^{\text {st }}$ mark] 3. Common answer $0.6 \times 250=150 \mathrm{~g}$
2	a	Ans: 21 ${ }^{-1} \quad$ interpret table: 21	1	
2	b	Ans: £7350 - ${ }^{1}$ find total payments: 7350	1	
2	c	Ans: £1350 - ${ }^{1}$ subtract 6000 from total payments: 1350	1	
3		Ans: $£ 214.24$ - ${ }^{1}$ find number of free teachers: 2 - ${ }^{2}$ find total cost excluding surcharge: $23 \times 8+2 \times 12=208$ - ${ }^{3}$ find total cost: $208+\frac{3}{100} \times 208=$ $214 \cdot 24$	3	1. Correct answer without working award 3/3

Question		Expected Answer/s	Max Mark	Additional Guidance
4		Ans: 0610 or 6.10am (on Tuesday) - ${ }^{1}$ correct method: $0945+13 \mathrm{~h} 25 \mathrm{~m}+7 \mathrm{~h}$ - ${ }^{2}$ correct answer: 0610 or $6 \cdot 10 \mathrm{am}$	2	1. Correct answer without working award $2 / 2$ 2. Accept $6 \cdot 10$ 3. (a) $6 \cdot 10 \mathrm{pm}$ or 1810 award $1 / 2$ (b) 3010 or $2970 \quad$ award $1 / 2$ (c) $0945+13 \mathrm{~h}+7 \mathrm{~h}=0545$ award $1 / 2$ (d) $0945+13 \mathrm{~h} 25 \mathrm{~m}-7 \mathrm{~h}=1610 / 4 \cdot 10 \mathrm{pm}$ award $1 / 2$ (e) $0945+13 \mathrm{~h} 25 \mathrm{mins}=2310$ award 0/2
5	a	Ans: line of best fit drawn - ${ }^{1} \quad$ draw line of best fit:	1	1. Accept straight lines with $\begin{gathered} -5 \cdot 8 / 1000 \leq \text { gradient } \leq-7 \cdot 7 / 1000 \\ \text { and } \\ \mid(\text { points above line })-(\text { points below line }) \mid \leq 2 \end{gathered}$
5	b	Ans: consistent with line of best fit - ${ }^{1}$ consistent with line of best fit:	1	1. You may have to extend candidate's line to check answer
6		Ans: £255 - ${ }^{1}$ find number of basic hours and number of overtime hours: 24 hours basic; 4 hours overtime - \quad find basic pay: $24 \times 8.50=204$ -3 find overtime pay: $4 \times 12.75=51$ - ${ }^{4}$ find total pay: $204+51=255$	4	1. Correct answer without working award 4/4

Question		Expected Answer/s	Max Mark	Additional Guidance
7	a	Ans: 30 minutes - ${ }^{1}$ interpret graph: 30 minutes or equivalent	1	
7	b	Ans: 48 mph - ${ }^{1}$ know how to find speed: $\mathrm{S}=\mathrm{D} / \mathrm{T}$ -2 interpret graph: $\mathrm{D}=180, \mathrm{~T}=3 \mathrm{~h} 45 \mathrm{~m}$ ${ }^{3} \quad$ find speed: $180 \div 3 \cdot 75=48$	3	1. Correct answer without working award 3/3 2. Some common answers (working must be shown, rounding or truncation is acceptable) (a) $180 \div 225=0.8 \mathrm{miles} /$ minute award $3 / 3$ (b) $180 \div 225=0 \cdot 8 \quad$ award $2 / 3 \checkmark \checkmark x$ (c) $180 \div 3 \cdot 45=52(\cdot 1 \ldots)$ award $2 / 3 \checkmark \checkmark x$ (d) $180 \times 3 \cdot 75=675$ award $2 / 3 \times \checkmark \checkmark$ (e) $180 \times 3 \cdot 45=621$ award 1/3 $\times \checkmark x$ (f) $180 \times 225=40500$ award $1 / 3 \times \checkmark x$ 3. Where time is only given in decimal form then $3^{\text {rd }}$ mark is only available for division (or multiplication) by: $3 \cdot 75,5 \cdot 75$ (total journey time) or $1 \cdot 75$ (time from Dumfries to Glasgow). ie $260 \div 5 \cdot 75=45(\cdot 2 \ldots) \checkmark \times \checkmark$ $80 \times 1 \cdot 75=140 \quad \times \times \checkmark$ 4. $3^{\text {rd }}$ mark is not available for division by a whole number.

	Expected Answer/s	Max Mark	Additional Guidance
10	Ans: 264 cm - ${ }^{1}$ correct form of Pythagoras' Theorem: $27^{2}+19^{2}$ -2 calculate sum (or difference) of two squares: 1090 - calculate the square root of a calculated value: 33 (•0151...) -4 calculate length: $8 \times 33(\cdot 0151 \ldots)=264(\cdot 1211 \ldots)$	4	1. Correct answer without working award 4/4 2. A common answer (working must be shown) $\sqrt{ }\left(27^{2}-19^{2}\right)=19(\cdot 18 \ldots) \rightarrow 19 \times 8=152$ [or $19 \cdot 18 \ldots \times 8=153 \cdot 46 \ldots$.] award $3 / 4 \times \checkmark \checkmark \checkmark$ 3. Final mark is not available if there is invalid subsequent working. 4. Alternate strategy - $27 \times 8=216$ and $19 \times 8=152$ - ${ }^{2}$ correct form of Pythagoras' Theorem $216^{2}+152^{2}$ - calculate sum (or difference) of two squares: 69760 - ${ }^{4}$ calculate the square root of a calculated value: 264(•1211..) 5. Note $4^{\text {th }}$ mark available for correctly calculating $8 \times$ previously calculated value.
11	Ans: 468 swiss francs - ${ }^{1}$ convert $€ 1500$ into pounds: $1500 \div 1 \cdot 25=1200$ -2 subtract 875 from answer to above: $1200-875=325$ - ${ }^{3}$ convert answer to above into Swiss francs: $325 \times 1.44=468$	3	1. Correct answer without working award $3 / 3$ 2. Some common answers (working must be shown) (a) $694 \cdot 44[(1500 \times 1 \cdot 25-875) \div 1 \cdot 44]$ award $2 / 3$ (b) $1440[(1500 \times 1 \cdot 25-875) \times 1 \cdot 44]$ award $2 / 3$ (c) $1728[(1500 \div 1.25) \times 1.44]$ award $2 / 3$ (d) $1000[1500 \times 1 \cdot 25-875]$ award $1 / 3$ (e) $900[(1500-875) \times 1 \cdot 44]$ award $1 / 3$ (f) $1260[875 \times 1 \cdot 44]$ award $1 / 3$ (g) $2160[1500 \times 1 \cdot 44]$ award 0/3

Question		Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
15		Ans: 548 m 2 - ${ }^{1}$ know how to calculate area of semi-circle: $1 / 2 \pi r^{2}$ - ${ }^{2}$ substitute correct radius into formula: $1 / 2 \times \pi \times 14^{2}$ -3 know to add area of rectangle to previously calculated value: previously calculated value $+20 \times 12$ -4 carry out all calculations correctly: $307 \cdot 876 \ldots+240=547 \cdot 876 \ldots$. $\left[1 / 2 \times 3 \cdot 14 \times 14^{2}=307 \cdot 72\right]$ (must include a circle calculation followed by an addition or subtraction) -5 round to nearest whole number: 548	5	1. Correct answer without working award 0/5 2. Where no formula is stated accept (a) $1 / 2 \times \pi \times 14^{2}$ or 308 or $307 \cdot 876 \ldots$. as evidence of $1 / 2 \pi r^{2}$ being used (b) $1 / 2 \times \pi \times 28$ or 44 or $43.98 \ldots$ as evidence of $1 / 2 \pi d$ being used 3. Some common answers (working must be shown) (a) 856 or 855 $\left[\pi \times 14^{2}+240\right]$ $\text { award 4/5 } \times \checkmark \checkmark \checkmark \checkmark$ (b) $360\left[1 / 2 \times \pi \times 14^{2}+4+12+20+12+4\right]$ award $4 / 5 \checkmark \checkmark \times \checkmark \checkmark$ (c) 1472 or 1471 $\left[1 / 2 \times \pi \times 28^{2}+240\right]$ $\text { award } 4 / 5 \times \checkmark \checkmark \checkmark \checkmark$ $\text { or } \checkmark x \checkmark \checkmark \checkmark$ (d) $284[1 / 2 \times \pi \times 28+240]$ award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$ (e) $262[1 / 2 \times \pi \times 14+240]$ award 3/5 $\times \times \checkmark \checkmark \checkmark$ (f) $308 \quad\left[1 / 2 \times \pi \times 14^{2}\right]$ award $3 / 5 \checkmark \checkmark \times \times \checkmark$ (g) 616 or $615\left[\pi \times 14^{2}\right]$ award $2 / 5 \times \checkmark \times \times \checkmark$ (h) $44 \quad[1 / 2 \times \pi \times 28]$ award 2/5 $\times \checkmark \times \times \checkmark$ (i) $88 \quad[\pi \times 28]$ award 2/5 $\times \checkmark \times \times \checkmark$ 4. (a) $5^{\text {th }}$ mark is only available where the answer to circle calculation requires rounding. (b) Where premature rounding leads to incorrect answer, a maximum of 4/5 is available.

TOTAL MARKS FOR PAPER 2

TOTAL MARKS FOR

PAPER 1 \& 2

80
[END OF MARKING INSTRUCTIONS]
Page 12

