Intermediate 2 Units 1, 2, 3 Paper 22006

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given the value of a boat decreases from $£ 35000$ to $£ 32200$ in 1 year.
(a) Percentage decrease is: $\frac{35000-32200}{35000} \times 100=8 \%$
(b) The value of the boat decrease at this rate for 3 years.

New value is: $\quad 32200 \times(0.92)^{3}=£ 25100$ to nearest $£$
2. Solving the simultaneous equations we get:

$$
\begin{array}{ll}
4 x+2 y=13 & \text { eqn } 1 \\
5 x+3 y=17 & \text { eqn } 2
\end{array}
$$

multiply eqn 1 by 3 and eqn 2 by 2
$12 x+6 y=39$ eqn 3
$10 x+6 y=34$ eqn 4
subtract eqn4 from eqn 3
$2 x=5 \quad x=2.5$
sub in eqn 1 to find y

$$
4 \times 2.5+2 y=13 \quad 2 y=3 \quad y=1.5
$$

Remember you can check values by substituting them into any of the other equations.

Intermediate 2 Units 1, 2, 3 Paper 22006

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q3. Given the diagram and that the toy is made up of a cone and hemisphere.
Calculating the volume we get:
Red value added to diagram.

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h+\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right) \\
& =\frac{1}{3} \times \pi \times 5^{2} \times 11+\frac{1}{2} \times\left(\frac{4}{3} \times \pi \times 5^{3}\right) \\
& =550 \mathrm{~cm}^{3} \text { to } 2 \text { sig. figs }
\end{aligned}
$$

Q4. Given the diagram and the centre of the circle is O.
EF is a chord of the circle.
EF is 18 cm .
The radius OF is 15 cm .
Knowing the properties of a circle
Red values have been added to diagram.
The width of the stand is:

Radius + height of right angled triangle

$$
15+12=27 \mathrm{~cm}
$$

By Pythagoras
$a^{2}+b^{2}=c^{2}$
$a^{2}=c^{2}-b^{2}$
$a^{2}=15^{2}-9^{2}$
$a=\sqrt{15^{2}-9^{2}}=12$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
Q. 5 Given the temperatures for the central heating system.

$$
\begin{array}{llllll}
19 & 21 & 23 & 21 & 19 & 20
\end{array}
$$

(i) The mean is: $\frac{(19+21+23+21+19+20)}{6}=20.5^{\circ} \mathrm{C}$
(ii) The standard deviation is:

$$
\begin{aligned}
& \mathrm{x} \\
& 19 \\
& \mathrm{x}^{2} \\
& 361 \\
& 21 \quad 441 \\
& 23 \quad 529 \\
& 21 \quad 441 \\
& 19 \\
& 361 \\
& \Sigma x=\begin{array}{l}
\frac{20}{123} \\
\\
\\
\\
x^{2}=\begin{array}{r}
400 \\
2533
\end{array} \\
\hline
\end{array} \\
& (\Sigma x)^{2}=\quad 15129 \\
& s=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}} \\
& s=\sqrt{\frac{2533-15129 / 6}{6-1}} \\
& s=\sqrt{\frac{2.3}{5}} \\
& s=1.52^{\circ} \mathrm{C}
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3
 Paper 22006

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
5. (b) Given the central heating is working correctly if it is within $0.6^{\circ} \mathrm{C}$ of the target temperature of $20^{\circ} \mathrm{C}$ and the standard deviation is less than $2^{\circ} \mathrm{C}$.

The system working correctly since the mean is $20.5^{\circ} \mathrm{C}$ which is within $0.6^{\circ} \mathrm{C}$ of the target and the standard deviation is $1.52^{\circ} \mathrm{C}$ which is less than $2^{\circ} \mathrm{C}$.
6. Factorising $4 p^{2}-49$

Difference of 2 squares $(2 p-7)(2 p+7)$
7. Expressing $\frac{3}{(x+1)}-\frac{1}{(x-2)}$ as a single fraction in its simplest form:

$$
\frac{3}{(x+1)}-\frac{1}{(x-2)}=\frac{3(x-2)-(x+1)}{(x+1)(x-2)}=\frac{3 x-6-x-1}{(x+1)(x-2)}=\frac{2 x-7}{(x+1)(x-2)}
$$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
8. Given the diagram of the penalty area on a football pitch.
$Q R$ is an arc of a circle centre P.
(a) Angle QPR is:

Red values added to diagram

$$
S^{O} H C^{A} H T^{O} A
$$

$\cos \theta=\frac{6}{10}$
$\theta=\cos ^{-1}\left(\frac{6}{10}\right)=53.13^{\circ}$
$Q P R=2 \times 53.1=106.3^{\circ}$
(b) Length of arc $Q R$ is:

$$
\begin{aligned}
& \text { length }_{\text {arcQR }}=\frac{\text { arc }^{o}}{\text { full circle }^{o}} \times 2 \pi r \\
& \text { length }_{\text {arcQR }}=\frac{106.3^{\circ}}{360^{\circ}} \times 2 \times \pi \times 10 \\
& \text { length }_{\text {arcQR }}=18.8 \text { yards }
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3
 Paper 22006

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
9. Changing the subject of the formula to x we get: $\frac{x}{c}+a=b$
$x+a c=b c$
$x=b c-a c$
$x=c(b-a)$

Q10. Given the diagram and that Alan sets off from A with an average speed of $5.6 \mathrm{~km} / \mathrm{h}$.

Bob sets off from B at the same time and both meet after 3 hours.

To find Bob's average speed we have:
Red values have been added to diagram.
Alan travelled:

$$
\begin{aligned}
& D=S T \\
& D=5.6 \times 3=16.8 \mathrm{~km}
\end{aligned}
$$

$$
\frac{a}{\sin A^{\circ}}=\frac{b}{\sin B^{\circ}}=\frac{b}{\sin C^{o}}
$$

$$
\frac{a}{\sin 80^{\circ}}=\frac{16.8}{\sin 70^{\circ}}
$$

$$
a=\frac{16.8 \times \sin 80^{\circ}}{\sin 70^{\circ}}=17.6 \mathrm{~km}
$$

Bob has an average speed of $17.6 \div 3=5.9 \mathrm{~km} / \mathrm{hr}$. Bob is faster by $0.3 \mathrm{~km} / \mathrm{hr}$.

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q11. Given the diagram and the volume is $24 \mathrm{~cm}^{3}$.
(a) We have:

1 m
$(x+5) \mathrm{m}$
$V=$ length \times breadth \times height $24=(x+5) \times(x) \times 1$
$24=x^{2}+5 x$
$x^{2}+5 x-24=0$ as required
(b) To find breadth solve for x.

$$
\begin{aligned}
& x^{2}+5 x-24=0 \\
& (x+8)(x-3)=0 \\
& x=-8 \quad x=3
\end{aligned}
$$

We reject $x=-8$ as a length cannot be negative, $\quad x=3$.

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q12. Given diagram and height h above point A at time t is given by:

$$
h=8+4 \sin t^{\circ}
$$

(a) $A \dagger+=30 \mathrm{~s} \quad h=8+4 \sin 30^{\circ}=10 \mathrm{~m}$

(b) The two times where point A is 10.5 metres above the ground is:

$$
\begin{aligned}
& 10.5=8+4 \sin t^{o} \\
& 8+4 \sin t^{o}=10.5 \\
& 4 \sin t^{o}=10.5-8 \\
& 4 \sin t^{o}=2.5 \\
& \sin t^{o}=\frac{2.5}{4} \\
& t^{o}=\sin ^{-1}\left(\frac{2.5}{4}\right)=38.7 \mathrm{~s}
\end{aligned}
$$

$$
0 \leq t^{\circ} \leq 360^{\circ}
$$

The two values are 38.7 s and $180 \mathrm{~s}-38.7 \mathrm{~s}=141.3 \mathrm{~s}$

