Intermediate 2 Units 1, 2, 3 Paper 22005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given the temperature in the greenhouse drops 4% per hour and the temperature at 8 pm is $28^{\circ} \mathrm{C}$. Then at 11 pm the temperature will be:

$$
\text { Temperature }=28(0.96)^{3}=24.77^{\circ} \mathrm{C}
$$

2. Given the fruit loaves data and that the mean is 400 g .

$$
\begin{array}{llllll}
395 & 400 & 408 & 390 & 405 & 402
\end{array}
$$

(a) The standard deviation is:

$$
\begin{aligned}
& \mathrm{x} \quad \mathrm{x}^{2} \\
& 395 \quad 156025 \\
& 400 \quad 160000 \\
& 408 \quad 166464 \\
& 390 \quad 152100 \\
& 405 \quad 164025
\end{aligned}
$$

$$
\begin{aligned}
& (\Sigma x)^{2}=5760000 \\
& S=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}} \\
& s=\sqrt{\frac{960218-5760000 / 6}{6-1}} \\
& s=\sqrt{\frac{218}{5}} \\
& s=6.6
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3 Paper 22005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
2. (b) Given the new method has mean 400 g and standard deviation 5.8 g . It is true to say that the new method ensures a more consistent weight since new method is less than the original standard deviation i.e. new deviation means less spread in data values.
3. Given straight line equation $3 y=12-4 x$.

The line crosses x-axis when $y=0$
$12-4 x=0 \quad 4 x=12 \quad x=3 \quad$ Coordinates $(3,0)$

Intermediate 2 Units 1, 2, 3
 Paper 22005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
4. Given the diagram of the two jewellery arrangements.

The length of a bead and a pearl can be found by:
$2 b+5 p=5.2 \quad$ eqn 1
$3 b+2 p=5.6 \quad$ eqn 2
multiply eqn 1 by 3 and eqn 2 by 2
$6 b+15 p=15.6$ eqn 3
$6 b+4 p=11.2$ eqn 4
sub tract eqn3 from eqn 4
$11 p=4.4 \quad p=0.4 \mathrm{~cm}$
sub in eqn 1 to find b
$2 b+5 \times 0.4=5.2 \quad 2 b=3.2 \quad b=1.6 \mathrm{~cm}$

Remember you can check values by substituting them into any of the other equations.

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

5 Given the sector of a circle diagram.

Calculating the sector area we get:

$$
\begin{aligned}
& \text { Area }_{\text {sector }}=\frac{\text { sector }}{\text { full circle }^{\circ}} \times \pi r^{2} \\
& \text { Area }_{\text {sector }}=\frac{110^{\circ}}{360^{\circ}} \times \pi(12.5)^{2} \\
& \text { Area }_{\text {sector }}=150 \mathrm{~cm}^{2}
\end{aligned}
$$

Q6. Given the diagram representing the three towns:
Red values are calculated from diagram

(a)(i) The size of angle HKM is $360^{\circ}-103^{\circ}-110^{\circ}=147^{\circ}$
(ii) Distance HN can be calculated using cosine rule. (2lengths and angle in between)

$$
\begin{aligned}
& k^{2}=h^{2}+m^{2}-2 h m \cos k^{o} \\
& k^{2}=30^{2}+22^{2}-2 \times 30 \times 22 \times \cos 147^{\circ} \\
& k^{2}=2491 \\
& k=50
\end{aligned}
$$

Total distance travelled is $22+30+50=102 \mathrm{~km}$

Intermediate 2 Units 1, 2, 3
 Paper 22005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q6. (b) The area of the triangle is given by:

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} h m \sin k^{\circ} \\
& \text { Area }=\frac{1}{2} \times 30 \times 22 \times \sin 147^{\circ} \\
& \text { Area }=179.7 \mathrm{~km}^{2}
\end{aligned}
$$

Q7. (a) Given the pharmaceutical company makes a pill that is sphere and has radius 0.5 cm . The volume is given by:

Volume $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(0.5)^{3}=0.52 \mathrm{~cm}^{3} \quad$ (2 sig. figs $)$
Given the shape of the pill is now cylindrical. The volume is the same as before. The diameter is 1.4 cm .

Calculating the height of the pill we get:

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& h=\frac{3 V}{\pi r^{2}}=\frac{3 \times 0.52}{\pi \times(0.7)^{2}}=1 \mathrm{~cm}
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3 Paper 22005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
8. Solving the equation we get:

$$
\begin{aligned}
& \qquad 4 x^{2}-7 x+1=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{7 \pm \sqrt{49-16}}{8} \\
& x=\frac{7 \pm \sqrt{33}}{8} \\
& x=\frac{7+\sqrt{33}}{8} \quad \text { and } \quad x=\frac{7-\sqrt{33}}{8} \\
& x=1.6 \quad \text { and } \quad x=0.2
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
9. Given the diagram of the circle with an equilateral triangle inside it.

Red values have been calculated.
(a) The size of angle $O B C$ is 30°.
(b) The length of $O B$ is:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\frac{11}{\sin 120^{\circ}}=\frac{c}{\sin 30^{\circ}}$
$c=\frac{11 \times \sin 30^{\circ}}{\sin 120^{\circ}}=6.35 \mathrm{~cm}$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
10. (a) Expressing $\frac{7}{\sqrt{2}}$ as a fraction with a rational denominator we get:

$$
\frac{7}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{7 \sqrt{2}}{2}
$$

(b) Expressing $\frac{a}{b} \times \frac{3 b}{a^{2}}$ as a single fraction in its simplest form we get:

$$
{ }_{1}^{1} \not{ }^{d} b x+\frac{3 b^{1}}{a^{21}}=\frac{3}{a}
$$

(c) Change the subject of the formula to r we get:

$$
\begin{aligned}
& p=q+2 r^{2} \\
& 2 r^{2}=p-q \\
& r^{2}=\frac{p-q}{2} \\
& r= \pm \sqrt{\frac{p-q}{2}}
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
11. (a) Solving the equation we get:

$$
7 \cos x^{\circ}-5=0 \quad 0 \leq x^{\circ} \leq 360^{\circ}
$$

Remember there will be 2 solutions in the range $0 \leq x^{\circ} \leq 360^{\circ}$

$$
\cos x^{\circ}=\frac{5}{7}
$$

$$
x^{o}=\cos ^{-1}\left(\frac{5}{7}\right)=44.4^{0} \text { and } 360^{\circ}-44.4^{\circ}=315.6^{\circ}
$$

Graphical the solution is:

(b) Simplifying the express we get:

$$
\tan x^{\circ} \cos x^{\circ}=\frac{\frac{\sin x^{\circ}}{\cos x^{0}}}{1} \cos x^{\circ}=\sin x
$$

