Intermediate 2 Units 1, 2, 3 Paper 12005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given stem leaf diagram the probability that a child chosen at random is less than 130 cm is :

$$
\frac{5}{18}
$$

1212459
13001578
140289
15112

$$
\begin{aligned}
& n=18 \\
& 12 \mid 1 \text { represents } 121 \mathrm{~cm}
\end{aligned}
$$

2. Given the diagram.
(a) The equation of the black straight line is:

Gradient is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-8}{4-0}=\frac{-8}{4}=-2$

$$
c=y-\text { intercept }=8
$$

Line has equation $\quad y=-2 x+8$

(b) Plotting the line (red line of graph) the two lines meet at $(2,4)$

Intermediate 2 Units 1, 2, 3 Paper 12005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

3 (a) Given $(4 x+2)(x-5)+3 x$

Multiplying out and gathering terms we have:

$$
\begin{aligned}
& (4 x+2)(x-5)+3 x \\
& =4 x(x-5)+2(x-5)+3 x \\
& =4 x^{2}-20 x+2 x-10+3 x \\
& =4 x^{2}-15 x-10
\end{aligned}
$$

(b) Using FOIL (or any other suitable method) to factorise the expression we get:
$2 p^{2}-5 p-12$
$=(2 p-3)(p+4)$

Intermediate 2 Units 1, 2, 3 Paper 12005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
4. Given the volume data for the freezers.
$78 \quad 81917585838478$

7578788183848591
(a) Calculating the median, lower and upper quartile we have:

$$
\text { median }=\frac{81+83}{2}=82 \text { lower }=\frac{78+78}{2}=78 \quad \text { upper }=\frac{84+85}{2}=84.5
$$

(b) Given the box plot the number that is left out is:

The value that was omitted was 85 since upper quartile should be 84.5 and median should be 82 and the only way to get these false values can be correct is by omitting 85 .
5. \quad Simplifying we get: $\quad k^{8} \times\left(k^{2}\right)^{-3}=k^{8} \times k^{-6}=k^{2}$
6. Given $\tan 45^{\circ}=1$

Then $\tan 135^{\circ}=-\tan 45^{\circ}=-1$

Intermediate 2 Units 1, 2, 3 Paper 12005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
7. Sketching the graph of $y=\sin 2 x^{\circ}$ in the range $0^{\circ} \leq x^{\circ} \leq 360^{\circ}$

8. (a) Given the diagram and the dimensions. The area is given by:

$$
\begin{gathered}
x \mathrm{~cm} \\
(x+2) \mathrm{cm} \\
\text { Area }=\text { length } \times \text { breadth } \\
\text { Area }=x(x+2) \\
\text { Area }=x^{2}+2 x
\end{gathered}
$$

(b) Given the area of the square is bigger than the rectangle we have:

$$
\begin{aligned}
& (x+1)^{2}-\left(x^{2}+2 x\right) \\
& =x^{2}+2 x+1-\left(x^{2}+2 x\right)=1
\end{aligned}
$$

Area is greater by 1 cm

Intermediate 2 Units 1, 2, 3
 Paper 12005

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
9. Given the diagram of $y=36-(x-2)^{2}$
(a) Coordinates of the maximum turning point is
(b) The axis of symmetry is $(b, c)=(2,36)$

The axis of symmetry is $x=2$

Given the second diagram with $y=20$ cutting $y=36-(x-2)^{2}$ at R and S.

If S has coordinates $(6,20)$ then the coordinates of R are given by:

Using the symmetry of the shape R has the coordinates:
$R=(-2,20)$

