3,1

2

- 1. (a) Given  $f(x) = \cos^2 x e^{\tan x}$ ,  $-\frac{\pi}{2} < x < \frac{\pi}{2}$ , obtain f'(x) and evaluate  $f'(\frac{\pi}{4})$ .
  - (b) Differentiate  $g(x) = \frac{\tan^{-1} 2x}{1 + 4x^2}$ .
- 2. Obtain the binomial expansion of  $(a^2-3)^4$ .
- 3. A curve is defined by the equations

$$x = 5\cos\theta, \qquad y = 5\sin\theta, \qquad (0 \le \theta < 2\pi).$$

- Use parametric differentiation to find  $\frac{dy}{dx}$  in terms of  $\theta$ .
- Find the equation of the tangent to the curve at the point where  $\theta = \frac{\pi}{4}$ .
- 4. Given z = 1 + 2i, express  $z^2(z + 3)$  in the form a + ib.

Hence, or otherwise, verify that 1 + 2i is a root of the equation

$$z^3 + 3z^2 - 5z + 25 = 0.$$

Obtain the other roots of this equation.

5. Express  $\frac{1}{x^2 - x - 6}$  in partial fractions.

Evaluate 
$$\int_0^1 \frac{1}{x^2 - x - 6} dx.$$

6. Write down the  $2 \times 2$  matrix  $M_1$  associated with an anti-clockwise rotation of  $\frac{\pi}{2}$  radians about the origin.

Write down the matrix  $M_2$  associated with reflection in the x-axis.

Evaluate  $M_2 M_1$  and describe geometrically the effect of the transformation represented by  $M_2 M_1$ .

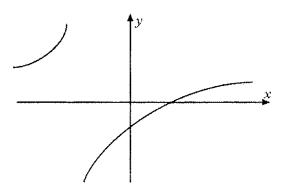
- 7. Obtain the first three non-zero terms in the Maclaurin expansion of  $f(x) = e^x \sin x$ .
- 8. Use the Euclidean algorithm to show that (231, 17) = 1 where (a, b) denotes the highest common factor of a and b.

Hence find integers x and y such that 231x + 17y = 1.

9. Use the substitution  $x = (u-1)^2$  to obtain  $\int \frac{1}{(1+\sqrt{x})^3} dx$ .

Determine whether the function  $f(x) = x^4 \sin 2x$  is odd, even or neither. 10. Justify your answer.

3


A solid is formed by rotating the curve  $y = e^{-2x}$  between x = 0 and x = 1 through 11. 360° about the x-axis. Calculate the volume of the solid that is formed.

Prove by induction that  $\frac{d^n}{dx^n}$   $(xe^x) = (x+n)e^x$  for all integers  $n \ge 1$ . 12.

5

5

The function f is defined by  $f(x) = \frac{x-3}{x+2}$ ,  $x \ne -2$ , and the diagram shows part of 13. its graph.



- Obtain algebraically the asymptotes of the graph of f. (*a*) 3
- Prove that f has no stationary values. (b)
- Does the graph of f have any points of inflexion? Justify your answer. (c) 2
- Sketch the graph of the inverse function,  $f^{-1}$ . State the asymptotes and (*d*) domain of  $f^{-1}$ .

3

2

14. Find an equation of the plane  $\pi_1$  containing the points A(1, 0, 3), (a) B(0, 2, -1) and C(1, 1, 0).

4

Calculate the size of the acute angle between  $\pi_1$  and the plane  $\pi_2$  with equation x + y - z = 0.

3

(b) Find the point of intersection of plane  $\pi_2$  and the line

$$\frac{x-11}{4} = \frac{y-15}{5} = \frac{z-12}{2} \,.$$

| 15. | (a)              | A mathematical biologist believes that the differential equation                                                                                                                                                                    |   |
|-----|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |                  | $x\frac{dy}{dx} - 3y = x^4$ models a process. Find the general solution of the                                                                                                                                                      |   |
|     |                  | differential equation.                                                                                                                                                                                                              | 5 |
|     |                  | Given that $y = 2$ when $x = 1$ , find the particular solution, expressing y in terms of x.                                                                                                                                         | 2 |
|     | (b) <sup>-</sup> | The biologist subsequently decides that a better model is given by the                                                                                                                                                              |   |
|     |                  | equation $y \frac{dy}{dx} - 3x = x^4$ .                                                                                                                                                                                             |   |
|     |                  | Given that $y = 2$ when $x = 1$ , obtain y in terms of x.                                                                                                                                                                           | 4 |
|     |                  |                                                                                                                                                                                                                                     |   |
| 16. | (a)              | Obtain the sum of the series $8 + 11 + 14 + \ldots + 56$ .                                                                                                                                                                          | 2 |
|     | (b)              | A geometric sequence of positive terms has first term 2, and the sum of<br>the first three terms is 266. Calculate the common ratio.                                                                                                | 3 |
|     | (c)              | An arithmetic sequence, $A$ , has first term $a$ and common difference 2, and a geometric sequence, $B$ , has first term $a$ and common ratio 2. The first four terms of each sequence have the same sum. Obtain the value of $a$ . | 3 |
|     |                  | Obtain the smallest value of $n$ such that the sum to $n$ terms for sequence $B$ is more than <b>twice</b> the sum to $n$ terms for sequence $A$                                                                                    | 2 |

[END OF QUESTION PAPER]