Intermediate 2 Units 1, 2, 3 Paper 22004

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given the average house price is $£ 77900$. The prices are increasing at 2.5% per month. In 3 months time the average value will be:

$$
\text { Price }=77900(1.025)^{3}=£ 83900 \text { to } 3 \text { sig. figs. }
$$

2. Given the heights of seedlings in millimetres.

$$
\begin{array}{llllll}
15 & 18 & 14 & 17 & 16 & 19
\end{array}
$$

(a)(i) The mean is:

$$
\frac{(15+18+14+17+16+19)}{6}=16.5 \text { millimetres }
$$

Intermediate 2 Units 1, 2, 3
 Paper 22004

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q2. (ii) The standard deviation is:

$$
\begin{aligned}
& \begin{array}{cc}
\mathbf{x} & \mathbf{x}^{\mathbf{2}} \\
15 & 225 \\
18 & 324 \\
14 & 196 \\
17 & 289 \\
16 & 256 \\
19 \\
\mathbf{x x}=\mathbf{9 9} & \boldsymbol{\Sigma} \mathbf{x}^{\mathbf{2}}=\begin{array}{c}
\mathbf{1 6 5 1} \\
\hline
\end{array} \\
\hline
\end{array} \\
& (\Sigma x)^{2}=9801 \\
& s=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}} \\
& s=\sqrt{\frac{1651-9801 / 6}{6-1}} \\
& s=\sqrt{\frac{17.5}{5}} \\
& s=1.87
\end{aligned}
$$

(b)(i) The seeds are measured again some time later.

New mean $=\frac{24}{6}+16.5=20.5$
(ii) The standard deviation will still be 1.87 since all values increased by the same about.

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

3 (a) Given $5 x+(x-4)(3 x+1)$
Multiplying out and gathering terms we have:

$$
\begin{aligned}
& 5 x+(x-4)(3 x+1) \\
& =5 x+x(3 x+1)-4(3 x+1) \\
& =5 x+3 x^{2}+x-12 x-4 \\
& =3 x^{2}-6 x-4
\end{aligned}
$$

(b) Using FOIL (or any other suitable method) to factorise the expression we get:

$$
\begin{aligned}
& 3 x^{2}-7 x+2 \\
& =(3 x-1)(x-2)
\end{aligned}
$$

Q4. Given the diagram.
Red value added to diagram $360 \div 5=72^{\circ}$
The perimeter of sector AOB is:
$r+r+$ length of arc
Perimeter $_{\text {sector }}=12+12+\frac{\text { sector }^{0}}{\text { full circle }^{\circ}} \times 2 \pi r$
Perimeter $_{\text {sector }}=24+\frac{72^{\circ}}{360^{\circ}} \times 2 \times \pi \times 12$

Perimeter $_{\text {sector }}=39.1 \mathrm{~cm}$

Intermediate 2 Units 1, 2, 3 Paper 22004

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
5. Given the information about entry to the sports centre. 14 adults and 4 children total cost was $£ 55.00$.
(a) Equation for above would be $14 x+4 y=55.00$.

13 adults and 6 children total cost was $£ 54.50$.
(b) Equation for above would be $13 x+6 y=54.50$.
(c) Fee for an adult and the fee for a child are:

$$
\begin{aligned}
& 14 x+4 y=55.00 \quad \text { eqn } 1 \\
& 13 x+6 y=54.50 \quad \text { eqn } 2 \\
& \text { multiply eqn } 1 \text { by } 3 \text { and multiply eqn } 2 \text { by } 2 \\
& 42 x+12 y=165 \text { eqn } 3 \\
& 26 x+12 y=109 \text { eqn } 4 \\
& \text { subtract eqn } 4 \text { from eqn } 3 \\
& 16 x=56 \quad x=£ 3.50 \text { adult fee } \\
& \text { sub in eqn } 1 \text { to find } y
\end{aligned} \quad \begin{aligned}
& 14 \times 3.5+4 y=55.00 \quad y=£ 1.50 \text { child fee } \\
& \text { remember you can check values by substituting them } \\
& \text { into any of the other equations. }
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3 Paper 22004

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
6. Solving the equation we get:

$$
\begin{aligned}
& 4 x^{2}+7 x-3=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-7 \pm \sqrt{49+24}}{4} \\
& x=\frac{-7 \pm \sqrt{73}}{4} \\
& x=\frac{-7+\sqrt{73}}{4} \quad \text { and } \quad x=\frac{-7-\sqrt{73}}{4} \\
& x=0.4 \quad \text { and } \quad x=-3.9
\end{aligned}
$$

Q7. Given the diagram of the quadrilateral.
(a) The length of the diagonal BD is:

$$
\begin{aligned}
& B D^{2}=A D^{2}+A B^{2}-2 \times A D \times A B \times \cos A^{\circ} \\
& B D^{2}=7.8^{2}+11.1^{2}-2 \times 7.8 \times 11.1 \times \cos 110^{\circ} \\
& B D=\sqrt{243.27} \\
& B D=15.6 \mathrm{~m}
\end{aligned}
$$

(b) The area is made up of 2 triangles.

$$
\begin{aligned}
& \text { Area }=\frac{1}{2}(A D)(A B) \sin A^{\circ}+\frac{1}{2}(B D)(B C) \sin B^{\circ} \\
& \text { Area }=0.5 \times 7.8 \times 11.1 \times \sin 110^{\circ}+0.5 \times 15.6 \times 9.3 \times \sin 78^{\circ}=111.6 m^{2}
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
8. Given the diagram. Red lines have been added to diagram.
(a) The area is given by:

$$
\begin{aligned}
\text { Area } & =(l \times b)+(l \times b) \\
& =2 \times(x+2)+x \times 2 \\
& =2 x+4+2 x \\
& =4 x+4
\end{aligned}
$$

(b) Given the area is $18 \mathrm{~m}^{2}$.

To find x :

$$
\begin{aligned}
A & =4 x+4 \\
18 & =4 x+4 \\
14 & =4 x \\
x & =3.5 \mathrm{~m}
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
9. Given the diagram of ice cream tubs and that they both cost the same.

The best value tub will be:
$V_{\text {cone }}=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \pi \times 5.2^{2} \times 20=566.3 \mathrm{~cm}^{3} \quad \downarrow$

$V_{\text {cylinder }}=\pi r^{2} h=\pi \times 5.5^{2} \times 5.8=551.2 \mathrm{~cm}^{3}$

Since the cone has the bigger volume it is the better value for money.
10. Solving the equation we get:
$7 \sin x^{\circ}-3=0 \quad 0 \leq x^{\circ} \leq 360^{\circ}$

Remember there will be 2 solutions in the range $0 \leq x^{\circ} \leq 360^{\circ}$
$\sin x^{\circ}=\frac{3}{7}$
$x^{\circ}=\sin ^{-1}\left(\frac{3}{7}\right)=25.4^{\circ}$ and $180^{\circ}-25.4^{\circ}=154.6^{\circ}$

Graphically

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
11. (a) Expressing $\frac{4}{x+3}+\frac{3}{x}$ as a single fraction in its simplest form:

$$
\frac{4 x+3(x+3)}{(x+3) x}=\frac{4 x+3 x+9}{x^{2}+3 x}=\frac{7 x+9}{x^{2}+3 x}
$$

(b) Change the subject of the formula to x we get:

$$
\begin{aligned}
& m=\frac{3 x+2 y}{p} \\
& m p=3 x+2 y \\
& m p-2 y=3 x \\
& 3 x=m p-2 y \\
& x=\frac{m p-2 y}{3}
\end{aligned}
$$

(c) Simplify we get:

$$
\frac{3 a^{5} \times 2 a}{a^{2}}=\frac{6 a^{5+1}}{a^{2}}=\frac{6 a^{6}}{a^{2}}=6 a^{6-2}=6 a^{4}
$$

