Intermediate 2 Units 1, 2, 3 Paper 12004

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given the data of marks for a class test.

5	9	10	4	5	5	6	10	5	8
5	7	4	9	7	5	4	6	5	7

(a) Constructing a Cumulative Frequency Table we get:

Number	Frequency	Cumulative Frequency
4	3	3
5	7	10
6	2	12
7	3	15
8	1	16
9	2	18
10	2	20

(b) The probability of a pupil getting a mark higher than 7 is $\frac{5}{20}=\frac{1}{4}$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
2. Given the diagram.
(a) The equation of the straight line is:

Gradient is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-1}{4-0}=\frac{8}{4}=2$
$c=y$ intercept $=1$

Line has equation $\quad y=2 x+1$

Q3. Given RP is a tangent to the circle, centre O, with point of contact T.
The shaded angle $P T Q=24^{\circ}$. To calculate angle OPT we have:

By statement above triangle PTO is right angled at T .

Angle $O T Q=90^{\circ}-24^{\circ}=66^{\circ}$
Since $O T=O Q$, triangle $O Q T$ is isosceles.
Angle OQT is 66°.

Since OQP is a straight line angle $P Q T=180^{\circ}-66^{\circ}=114^{\circ}$

By the properties of a triangle, angle $T P Q=180^{\circ}-114^{\circ}-24^{\circ}=42^{\circ}$.

Intermediate 2 Units 1, 2, 3 Paper 12004

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
4. Given the dot-plot diagram.

The plot represents the number of chocolates in a sample of 25 .

(a) Calculating the median, lower and upper quartiles we have: median $=50$ (13 th value) lower $=\frac{49+49}{2}=49$ upper $=\frac{51+52}{2}=51.5$
(b) Drawing a box-plot we get:

(c) The semi-interquartile range in part (b) is (51.5-49) $\div 2=1.25$. In a second sample of boxes, the semi-interquartile range is 1.5 .

The first sample is less spread out / more consistent that the second sample.

Intermediate 2 Units 1, 2, 3 Paper 12004

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
5. Given the diagram and that the logo is made up of 3 identical parabolas. Also the first parabola has equation $y=(x+2)^{2}-16$.

(a) The point P is given by $(b, c)=(-2,-16)$.
(b) Given that R is the point $(2,0)$ and using symmetry the second parabola has minimum turn point $Q(6,-16)$.
(c) The equation of the parabola with minimum turning point S is:

By symmetry the coordinates of S are $(14,-16)$.
The equation of parabola is $y=(x-14)^{2}-16$.

Intermediate 2 Units 1, 2, 3 Paper 12004

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
6. (a) Given part of the graph of $y=b \cos a x^{\circ}$

From graph $a=3\left(3\right.$ cycles in $\left.360^{\circ}\right) \quad b=4$
(b) Expressing $\sqrt{12}+5 \sqrt{3}-\sqrt{27}$ as a surd in its simplest form we get:

$$
\begin{aligned}
& \sqrt{12}+5 \sqrt{3}-\sqrt{27} \\
& =\sqrt{4} \sqrt{3}+5 \sqrt{3}-\sqrt{9} \sqrt{3} \\
& =2 \sqrt{3}+5 \sqrt{3}-3 \sqrt{3} \\
& =4 \sqrt{3}
\end{aligned}
$$

