

1. Given the data of marks for a class test.

5	9	10	4	5	5	6	10	5	8
5	7	4	9	7	5	4	6	5	7

(a) Constructing a Cumulative Frequency Table we get:

Number	Frequency	Cumulative Frequency		
4	3	3		
5	7	•		
	/	10		
6	2	12		
7	3	15		
8	1	16		
9	2	18		
10	2	20		

(b) The probability of a pupil getting a mark higher than 7 is $\frac{5}{20} = \frac{1}{4}$

www.mathsrevision.com

Intermediate 2 Units 1, 2, 3 Paper 1 2004

Created by Graduate Bsc (Hons) MathsSci (Open) GIMA

- 2. Given the diagram.
 - (a) The equation of the straight line is:

Gradient is $\frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 1}{4 - 0} = \frac{8}{4} = 2$

c = y intercept = 1

Line has equation y = 2x + 1

O

Т

Q3. Given RP is a tangent to the circle, centre O, with point of contact T. The shaded angle PTQ = 24°. To calculate angle OPT we have:

By statement above triangle PTO is right angled at T.

Angle $OTQ = 90^{\circ} - 24^{\circ} = 66^{\circ}$

Since OT = OQ, triangle OQT is isosceles. Angle OQT is 66°.

Since OQP is a straight line angle PQT = $180^{\circ} - 66^{\circ} = 114^{\circ}$

By the properties of a triangle, angle TPQ = $180^{\circ} - 114^{\circ} - 24^{\circ} = 42^{\circ}$.

Given the dot-plot diagram.The plot represents the number of chocolates in a sample of 25.

(a) Calculating the median, lower and upper quartiles we have:

median = 50 (13th value) *lower* = $\frac{49+49}{2} = 49$ *upper* = $\frac{51+52}{2} = 51.5$

(b) Drawing a box-plot we get:

(c) The semi-interquartile range in part (b) is (51.5 - 49) ÷ 2 = 1.25.
In a second sample of boxes, the semi-interquartile range is 1.5.

The first sample is less spread out / more consistent that the second sample.

5. Given the diagram and that the logo is made up of 3 identical parabolas. Also the first parabola has equation $y = (x + 2)^2 - 16$.

- (a) The point P is given by (b, c) = (-2, -16).
- (b) Given that R is the point (2, 0) and using symmetry the second parabola has minimum turn point Q (6, -16).
- (c) The equation of the parabola with minimum turning point S is:

By symmetry the coordinates of S are (14, -16).

The equation of parabola is $y = (x - 14)^2 - 16$.

6. (a) Given part of the graph of $y = b \cos ax^{\circ}$

From graph a = 3 (3 cycles in 360°) b = 4

(b) Expressing $\sqrt{12} + 5\sqrt{3} - \sqrt{27}$ as a surd in its simplest form we get:

$$\sqrt{12} + 5\sqrt{3} - \sqrt{27}$$

= $\sqrt{4}\sqrt{3} + 5\sqrt{3} - \sqrt{9}\sqrt{3}$
= $2\sqrt{3} + 5\sqrt{3} - 3\sqrt{3}$
= $4\sqrt{3}$