Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given the diagram.
$M N$ is a tangent that touches the circle centre O, at L.
Angle $\mathrm{JLN}=47^{\circ}$.
Angle KPL $=31^{\circ}$.

To find angle KLJ we have:

Angle PLN is right angled (tangent) therefore PLJ is $90^{\circ}-47^{\circ}=43^{\circ}$

Triangle PKL is a right angled

Therefore angel PLK is $180^{\circ}-90^{\circ}-31^{\circ}=59^{\circ}$

Angle KLJ is $43^{\circ}+59^{\circ}=102^{\circ}$
2. Given the table of Frequencies for washing powder brands.

Constructing a Pie Chart we get:

Washing Powder	Frequency	Angle
Dazzle	250	$\frac{250}{1000} \times 360=90$
Cyclo	375	$\frac{375}{1000} \times 360=135$
Surfer	125	$\frac{125}{1000} \times 360=45$
Cleano	250	$\frac{250}{1000} \times 360=90$
Total :	1000	

Intermediate 2 Units 1, 2, 3 Paper 22003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
3. Given the information.

Flights prices are $£ 30$ and $£ 50$.
On one flight total of 130 sold.
(a) Equation for above would be $x+y=130$.

The total sale for this flight was $£ 6000$.
(b) Equation for above would be $30 x+50 y=6000$.
(c) Number of seats sold at $£ 30$ and $£ 50$ would be:

$$
\begin{array}{rlrl}
x+y & =130 & \text { eqn 1 } \\
30 x+50 y & =6000 & & \text { eqn } 2
\end{array}
$$

multiply eqn 1 by 30
$30 x+30 y=3900$ eqn 3
$30 x+50 y=6000$ eqn 2
sub tract eqn3 from eqn 2
$20 y=2100 \quad y=105$ seats at $£ 50$
sub in eqn 1 to find x

$$
x+105=130 \quad x=25 \text { seats at } £ 30
$$

remember you can check values by substituting them into any of the other equations.

Intermediate 2 Units 1, 2, 3 Paper 22003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
4. Given the diagram.

Bath contains 150 litres of water.
Water drains at a steady rate of 30 litres per minute.

The equation connection V and \dagger is:
$c=y$ intercept $=150$

Gradient is -30 (water level is drop over time)
Line has equation $V=-30 t+150$
5. Given the temperatures $\left({ }^{\circ} \mathrm{C}\right)$ in a greenhouse over the period of a week.

$$
\begin{array}{lllllll}
17 & 22 & 25 & 16 & 21 & 16 & 16
\end{array}
$$

(a) The mean is:

$$
\frac{17+22+25+16+21=16+16}{7}=19^{\circ} \mathrm{C}
$$

The standard deviation is:

x		x^{2}
17		289
22		484
25		625
16		256
21		441
16		256
16		256
$\Sigma \mathrm{x}=133$	$\Sigma x^{2}=$	2607
$(\Sigma x)^{2}=17689$		

Intermediate 2 Units 1, 2, 3 Paper 22003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

$$
\begin{aligned}
& s=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}} \\
& s=\sqrt{\frac{2607-17689 / 7}{7-1}} \\
& s=\sqrt{\frac{80}{6}} \\
& s=3.65
\end{aligned}
$$

(b) Given best growth will occur when temperature is $20 \pm 5^{\circ} \mathrm{C}$ and when the standard deviation is less than $5^{\circ} \mathrm{C}$.

Since both conditions are met best growth is likely to occur.
6. Given the diagram and that the garden trough is in the shape of a prism. The height is 25 cm . The cross-section is made up of a rectangle and two identical semi-circles.
(a) The volume is given by:

$$
\begin{aligned}
& V=\left(l \times b+\pi r^{2}\right) \times h \\
& =\left(30 \times 46+\pi \times 15^{2}\right) \times 25 \\
& =52000 \mathrm{~cm}^{3} \text { (two sig. figs) }
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3 Paper 22003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
6. (b) Given the diagram and that the new design is a quarter of a circle with volume $30000 \mathrm{~cm}^{2}$.

The radius of the cross-section will be:

$V=\frac{1}{4}\left(\pi r^{2}\right) \times h$
$r^{2}=\frac{4 V}{\pi \times h}$
$r=\sqrt{\frac{4 V}{\pi \times h}}$ (Ignore negative value as it does not make sense in this context)
$r=\sqrt{\frac{4 \times 30000}{\pi \times 20}}$
$r=43.7 \mathrm{~cm}$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q7. Change the subject of the formula to x we get:

$$
\begin{aligned}
& y=a x^{2}+c \\
& a x^{2}+c=y \\
& a x^{2}=y-c \\
& x^{2}=\frac{y-c}{a} \\
& x= \pm \sqrt{\frac{y-c}{a}}
\end{aligned}
$$

Q8. Given the diagram.
Chairs are equally spaced out.
Distance from T to P going anti clockwise can be calculated as follows:

$$
\begin{aligned}
& C_{\text {arc }}=\frac{\text { arc }^{\circ}}{\text { full circle }}{ }^{\circ} \times 2 \pi r \\
& C_{\text {arc }}=\frac{22.5^{\circ}}{360^{\circ}} \times 2 \times \pi \times 9 \\
& C_{\text {arc }}=3.53 \mathrm{~cm}
\end{aligned}
$$

7 equal arcs therefore distance $=7 \times 3.53=24.7 \mathrm{~m}$

Intermediate 2 Units 1, 2, 3 Paper 22003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q9. Solving the equation we get:

$$
2 x^{2}+4 x-9=0
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-4 \pm \sqrt{16+72}}{4} \\
& x=\frac{-4 \pm \sqrt{88}}{4} \\
& x=\frac{-4+\sqrt{88}}{4} \quad \text { and } \quad x=\frac{-4-\sqrt{88}}{4} \\
& x=1.3 \quad \text { and } \quad x=-3.3
\end{aligned}
$$

Q10. Given the diagram of the parallelogram.
(a) The size of angle $P Q R$ is:

$$
\begin{aligned}
& \cos Q^{\circ}=\frac{r^{2}+p^{2}-q^{2}}{2 r p} \\
& \cos Q^{\circ}=\frac{8.4^{2}+11.2 p^{2}-12.6^{2}}{2 \times 8.4 \times 11.2} \\
& \cos Q^{\circ}=0.198^{\circ} \quad Q^{\circ}=78.6^{\circ}
\end{aligned}
$$

(b) The area of the parallelogram is made up of 2 identical triangle: Area $=2 \times \frac{1}{2} r p \sin Q^{\circ}$ Area $=8.4 \times 11.2 \times \sin 78.6^{\circ}=92.2 \mathrm{~cm}^{2}$

Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q11. (a) Expressing $a^{\frac{2}{3}}\left(a^{\frac{2}{3}}-a^{-\frac{2}{3}}\right)$ in its simplest form we get:

$$
a^{\frac{2}{3}}\left(a^{\frac{2}{3}}-a^{-\frac{2}{3}}\right)=a^{\frac{2}{3}} \times a^{\frac{2}{3}}-a^{\frac{2}{3}} \times a^{-\frac{2}{3}}=a^{\frac{4}{3}}-a^{0}=a^{\frac{4}{3}}-1
$$

(b) Expressing $\frac{a}{x}-\frac{b}{y}$ as a single fraction in its simplest form we get:
$\frac{a}{x}-\frac{b}{y}=\frac{a y-b x}{x y}$
12. (a) Solving the equation we get:

$$
2 \tan x^{\circ}+7=0 \quad 0 \leq x^{\circ} \leq 360^{\circ}
$$

Remember there will be 2 solutions in the range $0 \leq x^{\circ} \leq 360^{\circ}$

$$
\begin{aligned}
& \tan x^{\circ}=-\frac{7}{2} \\
& x^{\circ}=\tan ^{-1}\left(-\frac{7}{2}\right)=105.9^{\circ} \text { and } 360^{\circ}-74.1^{\circ}=285.9^{\circ}
\end{aligned}
$$

(b) Proving that $\sin ^{3} x^{0}+\sin x^{0} \cos ^{2} x^{0}=\sin x^{o}$ we get:

Taking out $\sin x^{\circ}$ as common factor and knowing $\left(\sin ^{2} x^{o}+\cos ^{2} x^{o}\right)=1$

$$
\sin x^{o}\left(\sin ^{2} x^{o}+\cos ^{2} x^{o}\right)=\sin x^{o}
$$

