Intermediate 2 Units 1, 2, 3

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given $(2 a-b)(3 a+2 b)$

Multiplying out and gathering like terms we have:

$$
\begin{aligned}
& (2 a-b)(3 a+2 b) \\
= & 2 a(3 a+2 b)-b(3 a+2 b) \\
= & 6 a^{2}+4 a b-3 a b-2 b^{2} \\
= & 6 a^{2}+a b-2 b^{2}
\end{aligned}
$$

2. Given the two spinners.

(a) Completing table we get:

	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	$\mathbf{5}$
Red Yellow Blue	$\mathrm{R}, 1$	$\mathrm{R}, 2$	$\mathrm{R}, 3$	$\mathrm{R}, 4$	$\mathrm{R}, 5$
	$\mathrm{Y}, 1$	$\mathrm{Y}, 2$	$\mathrm{Y}, 3$	$\mathrm{Y}, 4$	$\mathrm{Y}, 5$
	$\mathrm{~B}, 1$	$\mathrm{~B}, 2$	$\mathrm{~B}, 3$	$\mathrm{~B}, 4$	$\mathrm{~B}, 5$

(b) Probability that we have $p($ Red, Even $)=\frac{2}{20}=\frac{1}{10}$

Intermediate 2 Units 1, 2, 3 Paper 12003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
3. Given the diagram. The volume for this cone will be:

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi \times 10^{2} \times 12 \\
& V=1256 \mathrm{~cm}^{3}
\end{aligned}
$$

4. Given the stem leaf diagram represents waiting times for Quickcars:

Waiting times (minutes)

0	67	
1	2	3
2	5	4
3	2	5
4	5	
4	2	4

$n=14$
1|3 represents 13 minutes
(a) Calculating the median, lower and upper quartiles we have:

$$
\text { median }=\frac{26+29}{2}=27.5 \text { lower }=13 \quad \text { upper }=35
$$

(b) Semi-interquartile range is: $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{Q_{3}-Q_{1}}{2}=\frac{35-13}{2}=11$
(c) If FastCabs have a semi-interquartile of 2.5 then they are more consistent because data is less spread out.

Intermediate 2 Units 1, 2, 3 Paper 12003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
5. Given that the graph represents a function of the form $y=a \sin b x^{\circ}$

The values for a and b are 3 and 2 respectively.
6. Expressing $\frac{\sqrt{40}}{\sqrt{2}}$ as a surd in its simplest form we get:

$$
\frac{\sqrt{40}}{\sqrt{2}}=\frac{\sqrt{4} \sqrt{10}}{\sqrt{2}}=\frac{2 \sqrt{2} \sqrt{5}}{\sqrt{2}}=2 \sqrt{5}
$$

(b) Simplifying $\frac{2 x+2}{(x+1)^{2}}$ we get:

$$
\frac{2 x+2}{(x+1)^{2}}=\frac{2(x+1)^{1}}{(x+1)^{2}}=\frac{2}{(x+1)}
$$

Intermediate 2 Units 1, 2, 3 Paper 12003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
7. Given the two concentric circles.
$A B$ is a tangent to the small circle and a chord to the big circle.

Also $A B$ measures 16 cm .

Red values have been added to diagram since they are easily calculated.

Since $A B$ is a tangent radius of the small circle makes a right angle with the chord $A B$ as shown. It also bisects (halves) $A B$.

Using Pythagoras Theorem or recognising a Pythagorean triple we have:

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c=\sqrt{8^{2}+6^{2}} \\
& c=10 \mathrm{~cm}
\end{aligned}
$$

Intermediate 2 Units 1, 2, 3 Paper 12003

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
8.
(a) Factorising $7+6 x+-x^{2}$

Using FOIL (or any other suitable method) we get:

$$
\begin{aligned}
& 7+6 x-x^{2} \\
& =(7-x)(1+x)
\end{aligned}
$$

(b) The roots of $7+6 x+-x^{2}$ are:

$$
\begin{array}{rlrl}
(7-x) & =0 & (1+x) & =0 \\
x & =7 & x & =-1
\end{array}
$$

(c) Given the graph of $7+6 x+-x^{2}$

Red values have been added to diagram using information obtained in part (b).

By symmetry the x coordinate is 3 .
y coordinate is given by:
$y=7+6 \times 3-3^{2}=16$

Maximum turning point occurs at $(3,16)$

