General Exam Paper 1 Solutions 2002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. (a) Given $9.2-3.71+6.47$

$$
\begin{array}{r}
82 .{ }^{11} Q^{1} 0 \\
-\quad 3.71 \\
\hline 5.49 \\
5.49 \\
+\quad 6.47 \\
\hline 11.96 \\
\hline 1
\end{array}
$$

(b). Given 7.29×8

$$
\begin{array}{r}
7.29 \\
\times 8 \\
\hline \frac{58.32}{27}
\end{array}
$$

(c). Given $687 \div 300$
Divide by 100 first then

General Exam Paper 1 Solutions 2002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
(d).

$$
3 \times 2 \frac{3}{4}
$$

Step 1 : Make top heavy the same $\frac{3}{1} \times \frac{11}{4}$

Step 2 : Multiply top then bottom $\frac{3}{1} \times \frac{11}{4}=\frac{33}{4}=8 \frac{1}{4}$
2. Given a bag of sweets contains 3 yellow sweets, 4 purple sweets, 2 red sweets and 6 pink sweets.
(a) The probability that if a sweet falls out it will be yellow:

$$
P(\text { yellow })=\frac{\text { number of yellow }}{\text { total number of sweets }}=\frac{3}{15}=\frac{1}{5}
$$

(b) Given that it was a yellow sweet that fell out and it was put in the bin. The probability that the next sweet to fall out is pink:

$$
P(\text { pink })=\frac{\text { number of pink }}{\text { total number of sweets }}=\frac{6}{14}=\frac{3}{7}
$$

General Exam Paper 1 Solutions 2002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
3. Completing the shape so it has quarter-turn symmetry we have:

General Exam Paper 1 Solutions 2002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
4. Given 30% of 5 million people aged $15-19$ watch cartoons. This is:
$\frac{3}{10}$ of 5000000
Step 1 : Divide by 10: 500000
Step 2 : Multiply by 3: 1500000
5. (a) Plotting the points $A(-4,-3), B(3,-1), C(4,4)$ on the graph we get:

(b) gradient $=\frac{\text { Veticalheight }}{\text { horizontalDistance }}=\frac{2}{7}$
(c) To make a parallelogram we add the point D ($-3,2$)

General Exam Paper 1 Solutions 2002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
6. Given the various values, rearranging in order smallest first we get:

0.404	$\frac{1}{4}$	41%	0.04	$\frac{4}{10}$
0.04	$\frac{1}{4}$	$\frac{4}{10}$	0.404	41%

7. Given

- Centre O
- Triangle $A O B$ is isosceles
- $A C$ is a tangent line to the circle at B
- Angle DBA $=70^{\circ}$

Angle COB is given by:
$A O B$ is an isosceles triangle so angle $C B O=26^{\circ}$ and angle $A O B=128^{\circ}$.
Since $A B$ is a tangent to the circle, angle $B C O$ is right-angled.
Angle COB is $180^{\circ}-90^{\circ}-26^{\circ}=64^{\circ}$

General Exam Paper 1 Solutions 2002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
8. Given the Science and Mathematics marks in the table below.

Student	A	B	C	D	E	F	G	H	I	J
Science mark	35	45	65	70	57	25	80	85	10	34
Mathematics mark	41	52	65	75	60	28	84	90	11	37

(a) We can draw a Scattergraph.

(b) See graph
(c) A student who scores 50 in Science would be expected to score approximately 52 in Mathematics.

General Exam Paper 1 Solutions 2002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
9. Given the heights of Plant A and Plant B for one week and then their heights again the next week. The plant that has grown the most is:

Plant A $57 \mathrm{~cm}-29 \mathrm{~cm}=28 \mathrm{~cm}$
Plant B $\quad 71 \mathrm{~cm}-46 \mathrm{~cm}=25 \mathrm{~cm}$
Plant A has grown the most by 3 cm .
10. Given that Mr. Anderson switches his five tyres on his car in such a way that they are used equally. If he travelled 20000 miles last year then each tyre must have been used for:

Each tyre must cover:

$$
\frac{4}{5} \text { of } 2000
$$

Step 1: $20000 \div 5=4000$

Step 2: $4000 \times 4=16000$ miles

Each tyre does 16000 miles

